PROBLEM SET 1

DUE APRIL 5

All rings are commutative with 1.

1. Regular problems

1.1. Let M be an A-module and $M' \subseteq M$ a submodule. Prove that the additive inverse of an element of M' is in M'.

1.2. Verify the following assertions made in lecture:

- (i) The composition of A-module homomorphisms is again an A-module homomorphism.
- (ii) Let M, N be A-modules. Then $\operatorname{Hom}_A(M, N)$ is an A-module (with multiplication as defined in class, see the notes).
- (iii) Let $f: M \to N$ be an A-module homomorphism. Then ker(f) and im(f) are submodules of M and N respectively.
- (iv) Let M be an A-module. Then Ann(M) is an ideal of A.
- 1.3.
- (i) Compute Hom_{**Z**}($\mathbf{Z}/12\mathbf{Z} \times \mathbf{Z}/2\mathbf{Z}, \mathbf{Z}/30\mathbf{Z}$).
- (ii) What is the annihilator of the **Z**-module $\mathbf{Z}/2\mathbf{Z} \times \mathbf{Z}/3\mathbf{Z} \times \mathbf{Z}/4\mathbf{Z}$? What is the annihilator of the **Z**-module **Z**?

1.4.

- (i) Let M be an abelian group. Prove that if M has a structure of a **Q**-module with its given law of composition as addition, then this structure is uniquely determined.
- (ii) Prove that no finite abelian group has a **Q**-module structure.

1.5. An A-module is called *simple* (or *irreducible*) if it is non-zero and contains no proper non-zero submodules.

- (i) Prove that any simple A-module L is isomorphic to A/m where m is a maximal ideal.
- (ii) Prove Schur's lemma: let $f: L \to L'$ be a morphism of simple modules. Then either f is 0 or an isomorphism.
- (iii) Let L be an A-module. Set $\operatorname{End}_A(L) = \operatorname{Hom}_A(L, L)$. Then $\operatorname{End}_A(L)$ is ring via composition of maps. Prove that if L is simple, then $\operatorname{End}_A(L)$ is a field.

1.6. If $A^{\oplus m} \simeq A^{\oplus n}$, then show that m = n. Hint: let $\mathfrak{m} \subset A$ be a maximal ideal and consider A/\mathfrak{m} .

1.7.

- (i) Let A be a ring, $\mathfrak{a} \subseteq A$ an ideal. Prove or find a counterexample: if A/\mathfrak{a} is a free A-module, then $\mathfrak{a} = 0$.
- (ii) Let A be a ring such that every finitely generated A-module is free. Show that A is either a field or the zero ring.

1.8. Let $A = \mathbf{C}[x, y]$ and let \mathfrak{a} be the ideal of A generated by the elements x and y. Is \mathfrak{a} a free A-module? Prove or disprove.

1.9. Let $0 \to M' \to M \to M'' \to 0$ be a short exact sequence. Prove that if M'' is free, then $M \simeq M' \oplus M''$.

2. Optional problems

2.1. Prove the First, Second and Third isomorphism theorems for modules (see the notes if you don't remember what these are).

2.2. Let

$$N' \xrightarrow{f} N \xrightarrow{g} N'' \to 0$$

be a sequence of A-modules and A-module homomorphisms. Prove that this sequence is exact if and only if for all A-modules M, the sequence

$$0 \to \operatorname{Hom}(N'', M) \xrightarrow{g^*} \operatorname{Hom}(N, M) \xrightarrow{f^*} \operatorname{Hom}(N', M)$$

is exact.

2.3. Let $A = \mathbb{Z}[\sqrt{-5}]$. Let \mathfrak{p}_1 be the ideal generated by 3 and $1 + \sqrt{-5}$, let \mathfrak{p}_2 be the ideal generated by 3 and $1 - \sqrt{-5}$.

(i) Show that \mathfrak{p}_1 and \mathfrak{p}_2 are maximal ideals.

- (ii) Show that $\mathfrak{p}_1 + \mathfrak{p}_2 = A$.
- (iii) Show that $\mathfrak{p}_1 \cap \mathfrak{p}_2 = \mathfrak{p}_1 \mathfrak{p}_2$.
- (iv) Show that $\mathfrak{p}_1\mathfrak{p}_2$ is the ideal generated by 3. Conclude that $\mathfrak{p}_1\mathfrak{p}_2 \simeq A$ as an A-module.
- (v) Let $f: \mathfrak{p}_1 \oplus \mathfrak{p}_2 \to A$ be the morphism given by $(x, y) \mapsto x + y$. Show that $\ker(f) \simeq \mathfrak{p}_1 \cap \mathfrak{p}_2 = \mathfrak{p}_1 \mathfrak{p}_2$.
- (vi) Show that neither \mathfrak{p}_1 nor \mathfrak{p}_2 are principal ideals.
- (vii) Conclude that \mathfrak{p}_1 and \mathfrak{p}_2 are (isomorphic) direct summands of a free *A*-module but are not themselves free. Hint: construct an exact sequence $0 \to A \to \mathfrak{p}_1 \oplus \mathfrak{p}_2 \to A \to 0$.

Department of Mathematics, University of California, Davis, CA 95616 $E\text{-}mail\ address: \texttt{virkQmath.ucdavis.edu}$

 $\mathbf{2}$