
MODULES: FINITELY GENERATED MODULES

R. VIRK

1. Finitely generated modules

1.1. Let M be an A-module and x ∈ M . The set of all multiples ax, a ∈ A, is a
submodule of M , denoted by Ax. If M =

∑
i∈I Axi, then the xi are said to be a

set of generators of M . This means that every element of M can be expressed (not
necessarily uniquely) as a finite linear combination of xi with coefficients in A. The
module M is said to be finitely generated if it has a finite set of generators.

1.2. Example. A is a finitely generated A-module.

1.3. Proposition. M is a finitely generated A-module if and only if it is isomorphic
to a quotient of A⊕n for some integer n > 0.

Proof. Suppose M is finitely generated. Let x1, . . . , xn ∈ M generate M . Define
a morphism f : A⊕n → M, (a1, . . . , an) 7→ a1x1 + · · · + anxn. Then f is an A-
module homomorphism and im(f) = M . Hence, M ' A⊕n/ ker(f). Conversely,
suppose M ' A⊕n/K for some submodule K ⊆ A⊕n. Then the image of any set of
generators of A⊕n in M generates M . �

1.4. A set of generators of M is minimal if no proper subset of it generates M .
Two minimal sets of generators need not have the same number of elements:

1.5. Example. Let A = C[x], then {1} and {x, 1+x} are minimal sets of generators
for the A-module A.

1.6. A set of elements {x1, . . . , xn} of M is independent if no non-trivial linear
combination of them is zero. That is, if the following condition holds: if a1x1 +
· · · + anxn = 0, with ai ∈ A, then ai = 0 for all i. The set is a basis if it is both
independent and a generating set. A basis is necessarily a minimal set of generators.

2. Nakayama’s lemma

The following inoccuous looking result is often extremely useful.

2.1. Lemma (Nakayama’s lemma). Let M be a finitely generated A-module and a
an ideal of A such that aM = M . Then there exists an a ∈ a such that (1−a)M = 0.

Proof. Let e1, . . . , en be a set of generators for M . As aM = M , we obtain a system
of equations

e1 = a11e1 + · · ·+ a1nen,

...
...

en = an1e1 + · · ·+ annen,

for some aij ∈ a. Let T be the matrix (aij). Then the system of equations above is
equivalent to

(T − 1n)

e1

...
en

 = 0,
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where 1n is the n×n matrix with 1s on the diagonal and 0s elsewhere. Multiplying
by the adjoint (sometimes also called the adjugate) matrix of (T − 1n) we obtain

det(T − 1n)1n

e1

...
en

 = 0,

where det(T − 1n) denotes the determinant of T − 1n. Thus, det(T − 1n)M = 0.
Expanding det(T − 1n), we see that it gives an element of the required form. �

2.2. The following application of Nakayama’s lemma shows that at least in one
sense finitely generated modules behave like finite dimensional vector spaces:

2.3. Proposition. Let M be a finitely generated A-module, f : M → M a mor-
phism. If f is surjective then it is an isomorphism.

Proof. We consider M as an A[t]-module via tx = f(x), x ∈ M . It is clear that M
is a finitely generated A[t]-module. As f is surjective, tM = M . So by Nakayama’s
lemma there exists some polynomial p(t) ∈ A[t] such that (1− tp(t))M = 0. Hence,
if x ∈ ker(f), then 0 = (1− tp(t))x = x. �

3. Presentations

3.1. Just as for vector spaces we can represent an element of A⊕n by an n × 1
‘column vector’ with entries in A. Namely, the ‘column vector’ (ai1)1≤i≤n is just new
notation for the element (a11, . . . , an1). In exactly the same way as for vector spaces,
any A-module homomorphism A⊕m → A⊕n can be represented by an n×m matrix
with entries in A. Composition of such morphisms corresponds to multiplication
of matrices. Conversely, any n × m matrix with entries in A gives an A-module
homomorphism A⊕m → A⊕n. More formally, let Matn×m(A) be the set of n ×m
matrices with entries in A. This is an A-module in the obvious way and we have just
given an A-module isomorphism HomA(A⊕m, A⊕n) ∼−→ Matn×m(A). This point of
view will allow us to reduce several questions about modules to manipulations with
matrices.

3.2. Let M be an A-module. An exact sequence of the form M ′′ → M ′ → M → 0
with M ′′ and M ′ free is called a presentation of M . We will be mainly interested
in presentations in which M ′′ and M ′ are of finite rank: a finite presentation of M
is an exact sequence

A⊕m → A⊕n → M → 0
with m,n positive integers.

3.3. I will now try to give a more down to earth description of a presentation for
a module. Let M be an A-module. An expression of the form

a1x1 + · · ·+ anxn = 0, ai ∈ A, xi ∈ M

is called a relation amongst the elements x1, . . . , xn. I claim that to give the module
M is the same as giving the data of a set of generators for M and all relations
amongst these generators. Before making this precise let me illustrate with some
examples.

3.4. Example. The A-module A is the same as giving a generator e and no relations.

3.5. Example. Let A = C[x] and let a be the ideal generated by x. Then the module
a is equivalent to the data of a generator e (corresponding to the element x) and
no relations. Note that a and A are isomorphic as A-modules. Now consider the
module A/a. This module is equivalent to the data of a generator e and relations
f(x)e = 0 for every polynomial f(x) ∈ C[x] with zero constant term. A ‘finite’ way
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of giving the relations is to just say that xe = 0, the module structure then forces
all the other relations.

3.6. Now let’s make all of this precise, or rather let me explain how the defini-
tion of presentations in terms of exact sequences makes this precise. Assume M is
finitely generated. Then this is the same as saying that there is an exact sequence
A⊕n → M → 0. The image of your favorite set of generators in A⊕n gives a set of
generators in M . The relations amongst these generators are precisely the kernel of
the morphism A⊕n → M . If we get lucky then this kernel is also finitely generated.
That is, we get an exact sequence

A⊕m → A⊕n → M → 0.

Thus, giving a presentation is the same as writing down a set of generators and the
relations amongst these generators. Note that the module M can be recovered from
the morphism A⊕m → A⊕n, indeed M is the cokernel of this morphism. This is
just a fancy way of saying that giving generators and relations completely describes
the module. You should also note that the map A⊕m → A⊕n can be described by
an n×m matrix. This matrix is often called the presentation matrix. Thus, all the
information contained in the module M is completely described by its presentation
matrix.

3.7. Example. Let A = C[x] and let a be the ideal generated by x. Then left
multiplication by x gives an A-module homomorphism A

x·−→ a that is surjective.
The kernel of this map is trivial. Hence, 0 → A

x·−→ a is a presentation of a.

3.8. Example. Let A = Z and let M be the A-module with generators x, y and
relations 2x−y = 0. The morphism A⊕2 → M, (a, b) 7→ ax+by is clearly surjective.
Its kernel is generated by 2(1, 0)− (0, 1). Hence,

Z

“
2
−1

”
−−−−→ Z⊕2 (a,b) 7→ax+by−−−−−−−−→ M → 0

is a presentation of M . Can you spot a simpler presentation of M?

3.9. A presentation is by no means unique. In fact, one could reasonably argue
that the whole point behind the notion of modules is to give a systematic way of
talking about when two presentations describe the same object/module.

3.10. Example. Let M be the zero module, in other words M is generated by e and
relations e = 0. Let N be the Z-module with generators x, y, z and relations

2x + 3y + 5z = 0,

5x + 7y + 12z = 0,

11x− 8y + 3z = 0,

31x− 12y − 99z = 0.

Then N ' M (solve the equations!).

3.11. I hope that I have convinced you by now that if we want to analyze modules,
then a reasonable place to start is with finitely presented modules. Analyzing such
modules is equivalent to dealing with finitely many equations in finitely many vari-
ables. Equivalently, we want to understand matrices. These are things that we have
been doing since middle school. Before beginning our analysis it would certainly be
nice to have an easy way of detecting modules that have finite presentations! Recall
that a ring A is called Noetherian if every proper ideal of A is finitely generated.
This is equivalent (via a standard Zorn’s lemma argument) to requiring that every
ascending chain of ideals in A stabilize at some point.
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3.12. Proposition. Let A be a Noetherian ring. Then every submodule of a finitely
generated A-module is finitely generated.

Proof. Exercise! Hint: a standard way of doing this is via induction on the number
of generators. �

3.13. Corollary. Let A be a Noetherian ring. Then every finitely generated A-
module is finitely presented.

Proof. Let M be a finitely generated A-module. Then we have an exact sequence
A⊕n → M → 0 with n a positive integer. By Prop. 3.12 the kernel of this morphism
is also finitely generated. This gives an exact sequence A⊕m → A⊕n → M → 0. �

4. Smith normal form

4.1. Let us now begin our analysis of m×n matrices with entries in a ring A. Since
we are after finitely presented modules, it makes sense (at least for now) to restrict
to Noetherian rings (see Cor. 3.13). Alas, at the moment this is still too general a
setting for us to be able to say anything meaningful. However, we can make a nice
statement if our ring is a principal ideal domain or PID for short. Recall that this
is an integral domain in which each ideal can be generated by a single element. A
PID is Noetherian.

4.2. Proposition (Smith normal form). Let T be a m × n matrix with entries in
a principal ideal domain A. Then there exist invertible matrices P and Q (with
entries in A) such that PTQ−1 is diagonal:

d1 0 · · · · · · 0
0 d2 0 · · · 0
...

...
0 · · · · · · 0 dm


where each diagonal entry di divides the next di+1 (i.e., the ideal generated by di+1

is contained in the ideal generated by di). (A matrix of this form is said to be in
Smith normal form).

4.3. Remark. Before giving the proof I want to make a few comments. Artin’s book
contains the proof for the special case A = Z. Some very minor modifications to
his proof gives a proof for Euclidean domains (= integral domains with a division
algorithm). I am going to assume that you are familiar with his proof (= if I were to
wake you up at 3AM and ask you to put a 3× 4 integer matrix into Smith normal
form you should be able to do it). The proof for general PIDs wont make much
sense otherwise. The basic idea is the same, we use row and column operations
(which correspond to multiplication by invertible matrices). However, in general
these aren’t enough (see Step 1 below).

Proof. Let aij denote the entry in the i’th row and j’th column of T . Certainly we
may assume that T 6= 0. Proceeding by induction, we only need to show that we
can replace all the entries, except a11, in the first row and first column by 0, and
further have a11 divide all the other entries in T .

Step 0: If a11 = 0, swap it with a non-zero entry.
Step 1: Choose a non-zero entry ai1 in the first column. If a11 divides ai1, then

certainly we can replace ai1 by 0 without changing any of the other entries in the
first column. Suppose a11 does not divide ai1. By swapping rows, if necessary, we
may assume that i = 2. Let r be a generator for the ideal generated by a11 and
a21. Then r = xa11 + ya21 for some x, y ∈ A. Further, a11 = x′r and a21 = y′r for
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some x′, y′ ∈ A. So (xx′ + yy′ − 1)r = 0. As A is an integral domain, we infer that
xx′ + yy′ = 1. Consequently, the m×m matrix

x y 0 ··· ··· 0
−y′ x′ 0 ··· ··· 0
0 0 1 0 ··· 0
...

...
0 ··· ··· ··· ··· 1


is invertible. Multiplying on the left with this matrix replaces a11 with r and replaces
a21 with an element divisible by r and leaves all other entries in the first column
unaffected. We may now replace a21 by 0 without changing any of the other entries
in the first column.

Step 2: Run the obvious analogue of Step 1 for entries in the first row. Of course,
at some iteration this may produce a non-zero entry in the first column. Whenever
this happens go back to running Step 1 for column entries. Note that the entry
a11 is producing an ascending chain of ideals. As our ring is a PID and hence
Noetherian, this chain must stabilize at some point. By construction, this chain
can only stabilize when all the entries, except a11, in the first row and first column
are zero.

Step 3: At this point all the entries in the first row/column except a11 are 0.
However, a11 may not divide all the other entries of T . Let aij be such an entry.
Add the j’th column to the first column and go back to Step 1. Once more, note
that the iteration of Steps 1-3 produces an ascending chain of ideals via the entry
a11. This chain must stabilize and by construction this can only happen when a11

divides all the other entries in T . �

4.4. Example. Let A = Z and let T = ( 2 1
4 5 ). Step 1 subtracts 2 times the first

row from the second to give ( 2 1
0 3 ). Step 2 now multiplies this matrix on the right

by
(

1 −1
−1 2

)
to give

(−1 0
−3 6

)
. This sends us back to Step 1 which adds 3 times the

first row to the second to give ( 1 0
0 9 ), and we are done! In terms of multiplying with

matrices this is the sequence

( 2 1
4 5 )

“
1 0
−2 1

”
·

−−−−−−→ ( 2 1
0 3 )

·
“

1 −1
−1 2

”
−−−−−−−→

(
1 0
−3 6

) ( 1 0
3 1 )·

−−−−→ ( 1 0
0 9 )
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