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1. DEFINITIONS AND BASIC CONSTRUCTIONS

1.1. Let A be a ring (commutative with 1). An A-module is an abelian group M
(written additively) on which A acts linearly. More precisely, it is a pair (M, p),
where A is an abelian group and p is a map A x M — M such that, if we write ax
for p(a,x) (a € A,x € M), the following axioms are satisfied:
() a(z+y) = az + oy

(ii) (a+d')x =ax + d'x;

(iil) (aa)x = a(a’z);

(iv) lz ==z

for all a,a’ € A and all z,y € M.

1.2. Example. If A is a field k, then A-module = k-vector space.

1.3. Exzample. A Z-module is the same thing as an abelian group.

1.4. Ezample. Anideal a of A is an A-module. In particular, A itself is an A-module.

1.5. Ezample. Let A = k[z] where k is a field. Then an A-module is a k-vector
space M with a linear transformation M — M.

1.6. Example. The trivial group is an A-module (there is only one possible action).
It is denoted by 0.

1.7. Let M, N be A-modules. A map f: M — N is an A-module homomorphism
(or A-linear) if:

(i) fz+y) = f@)+ fly)

(i) f(az) = af(x)
for all a € A and all z,y € M. The composition of A-module homomorphisms is
again an A-module homomorphism.

1.8. Example. If A is a field, then an A-module homomorphism is the same thing
as a linear transformation of vector spaces.

1.9. Example. A Z-module homomorphism is the same thing as a homomorphism
of abelian groups.
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1.10. An A-module homomorphism f: M — N is an isomorphism (often denoted
f: M = N) if there exists an A-module homomorphism f~': N — M such that
fof~tand f~!o f are the identity map on N and M respectively.

1.11. Remark. 1f it is clear that I am talking about A-modules I will often abbreviate
‘A-module homomorphism’ to ‘morphism’. Further, M ~ N will denote that M and
N are isomorphic.

1.12. Let M, N be A-modules. Then the set of all A-module homomorphisms
M — N can be turned into an A-module as follows: define f + g and af by the
rules

(f+9)(x) = f(z) +g(x), (af)(x)=af(z)
forallz € M and a € A. This A-module is denoted Hom 4 (M, N) or just Hom(M, N)
(if there is no ambiguity about the ring A). Morphisms u: M’ — M andv: N — N”
induce maps

u*: Hom(M, N) — Hom(M',N) and wv,: Hom(M, N) — Hom(M, N")
defined as follows:
w(f) = fou, v.(f)=vof.
The maps v* and v, are A-module homomorphisms. For any A-module M there is a

natural isomorphism Hom(A, M) ~ M: any A-module homomorphism f: A — M
is uniquely determined by f(1), which can be any element of M.

1.13. Let M be an A-module. A submodule M’ of M is a subgroup of M which is
closed under multiplication by elements of A. The abelian group M /M’ then inherits
an A-module structure from M, defined by a(z + M') = ax + M'. The A-module
M/M' is the quotient of M by M'. If f: M — N is an A-module homomorphism,
then the kernel of f is the set

ker(f) ={z € M| f(z) =0}
and is a submodule of M. If ker(f) = 0, then f is injective. The image of f is the
set

im(f) = f(M)

and is a submodule of N. If im(f) = N, then f is surjective. The cokernel of f is

coker(f) = N/im(f)
which is a quotient module of N. A morphism that is both injective and surjective
is an isomorphism:
1.14. Proposition (First isomorphism theorem). Let f: M — N be an A-module
homomorphism. Then f induces an isomorphism

im(f) ~ M/ker(f).
Proof. Exercise! O

1.15. Let M be an A module and let {M;};c; be a family of submodules of M.
Their sum > M; is the set of all finite sums > a;, where x; € M; for all ¢ € I and
almost all the x; are 0. The set > M; is a submodule of M. It is the smallest sub-

module of M which contains all the M;. The intersection (| M; is also a submodule
of M.

1.16. Proposition (Second isomorphism theorem). If Mi, Ms are submodules of
M, then
(Ml + Mg)/Ml ~ MQ/(Ml n MQ)

Proof. Exercise! O
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1.17. Proposition (Third isomorphism theorem). If N C M C L are A-modules,
then
(L/N)/(M/N)~ L/M.

Proof. Exercise! O

1.18. In general we cannot ‘multiply’ two submodules, but we can define alM,
where a is an ideal of A and M is an A-module; it is the set of all finite sums
> asx; with a; € a, ; € M, and is a submodule of M.

1.19. Let M be an A-module. The annihilator of M is
Anmm(M)={a € Alaxr =0 for all z € M}.

This is an ideal of A. Moreover, if a C Ann(M) is a sub-ideal, then we may regard
M as an A/a-module as follows: if @ € A/a is represented by a € A, define ax to
be azx for all x € M. This is independent of the choice of representative a, since
aM = 0.

1.20. If M, N are A-modules, their direct sum M @ N is the set of all pairs (z,y)
with x € M, y € N. This is an A-module with addition and multiplication defined
by:
(@1,91) + (22,92) = (21 + 22,91 +12)  a(w,y) = (az, ay).

More generally, if {M;};er is a family of A-modules, we define their direct sum
D, M; as follows: its elements are families (x;);cr such that x; € M; for each
i € I and almost all the z; are 0. If we drop the restriction on the number of
non-zero x;’s, then we obtain the direct product Hie 1 M;. Direct sum and direct
product are the same if the index set I is finite (but not otherwise, in general).

1.21. Proposition. Let M, N be submodules of L. f M+ N =L and MNN =0,
then L~ M @& N.

Proof. Define f: M @& N — L,(m,n) — m+mn. As M+ N = L, f is surjective. If
fim+n) =m+n =0, then m = —n. Consequently, both m,n are in M N N. So,
m =n = 0. Hence, f is injective. O
2. EXACT SEQUENCES
2.1. A sequence of A-modules and A-module homomorphisms
f_‘1>M1f_)M1+1fL)

is said to be exact at M if im(f;_1) = ker(f;). The sequence is ezact if it is exact
at each M;.

2.2. Example. 0 — M’ I, M is exact if and only if f is injective.
2.3. Ezample. M 2 M" — 0 is exact if and only if ¢ is surjective.
2.4. Example. A sequence
0—M LML M -0 (2.4.1)

is exact if and only if f is injective, g is surjective and g induces an isomorphism
of coker(f) = M/im(f) onto M".

2.5. Remark. An exact sequence of type (2.4.1]) is often called a short exact sequence.

The proof of the following result is not particularly enlightening, however it is a
good exercise in keeping many of the definitions so far straight.
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2.6. Proposition. Let
0—M LM m”

be a sequence of A-modules and morphisms. Then this sequence is exact if and only
if for all A-modules N, the sequence

0 — Hom(N, M) 5 Hom(N, M) £ Hom(N, M")
1S exact.

Proof. First, assume 0 — M’ I M & M” is exact. Let’s show exactness at
Hom(N, M’). Let u € ker(f,), i.e., fou =0. As f is injective, this implies u = 0.
That is, we have exactness at Hom(N, M’). Let’s show exactness at Hom (N, M).
Let v € im(f,), i.e.,, v = f o/ for some v € Hom(N, M’). Then g.(v) = gov =
go fou' =0, since im(f) = ker(g). Thus, im(f.) C ker(g.). On the other hand, if
v’ € ker(g«), then v'(y) € ker(g) for all y € N. As im(f) = ker(g) and f is injective,
for each y € N there is a unique h(y) € M’ such that v'(y) = f(h(y)). The map
N — M’y — h(y) is an A-module homomorphism. Indeed, for a € A,

v'(ay) = av'(y) = af(h(y)) = f(ah(y)).

By the uniqueness of h(ay) we must have that h(ay) = ah(y). Similarly, if ¢y is
another element in N, then

Vy+y) =0 y) + ') = f(h(y) + f(() = F(Ry) + h(y))-

And by the uniqueness of h(y + y'), we have h(y +y') = h(y) + h(y'). Now v =
foh= f.(h),ie., ker(g.) C im(f.). Hence, we have exactness at Hom (N, M).

Now assume 0 — Hom(N, M") ELN Hom(N, M) 2% Hom(N, M") is exact for all
A-modules N. Let’s show 0 — M’ L5 M 2 M" is exact. For exactness at M’ take
N = ker(f) and let i: ker(f) — M’ be the inclusion map. Then f.(i) = foi =0.
As f, is injective this implies ker(f) = 0. Let’s show exactness at M. Take N = M
and let idy; be the identity map on M. Then go f = g.(f) = g«f«(idpr) = 0,
by exactness at Hom(N, M) = Hom(M, M). Hence, im(f) C ker(g). Now take
N = ker(g) and let j: ker(g) — M be the inclusion map. Then j € ker(g,), so
j = im(f.), by exactness at Hom(N, M) = Hom(ker(g), M). That is, j = f o k for
some k € Hom(ker(g), M'). Consequently, ker(g) C im(f). O

2.7. Example. If N’ L NS N S 0is exact, then it is not necessarily true that

Hom (M, N') ELN Hom(M, N) £ Hom(M, N") — 0 is exact. For instance, consider
the exact sequence of Z-modules Z — Z/2Z — 0 where Z — Z/27Z is the obvious
quotient map. Then clearly Hom(Z/2Z,Z) — Hom(Z/2Z,Z/2Z) — 0 is not exact.

2.8. Proposition. Let
N L NL N0

be a sequence of A-modules and A-module homomorphisms. Then this sequence is
exact if and only if for all A-modules M, the sequence

0 — Hom(N", M) L~ Hom(N, M) L= Hom(N', M)
s exact.

Proof. Exercise! O
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3. FREE MODULES

3.1. A free A-module is one which is isomorphic to an A-module of the form
@D, Mi, where each M; ~ A (as an A-module). A free module that is isomorphic
to A® .-+ ® A (n summands) is said to have rank n. The module A®---® A (n-
summands) is often denoted by A®™ or A™. By convention A% is the zero module.
The notion of rank is well defined:

3.2. Proposition. If A®" ~ A9™ then m = n.
Proof. Exercise! Hint: let m be a maximal ideal of A and consider A/m. g

3.3. Ezxample. A submodule of a free module need not be free. Even a direct
summand of a free module need not be free (M is a direct summand of L if
L ~ M @ N for some module N). For instance, let A = Z/6Z, then as an A-
module Z/6Z ~ Z /27 © Z/3Z. However, neither Z/2Z nor Z/3Z are free modules.

It is slightly harder to construct an example as above if we require A to be an
integral domain. Such an example is outlined in the problem set.

3.4. Proposition. Let 0 — M’ oM L M” =0 be an exact sequence of A-
modules. Let N be a free module. Then

0 — Hom(N, M’) L Hom(N, M) £ Hom(N, M") — 0
18 exact.

Proof. Prop. gives exactness at Hom(N, M’) and Hom(N, M). By definition,
N ~ @,.; Ai. For each j € I, let e; denote the image of 1 € A; C @,.; A;
under this isomorphism. Let u € Hom(N, M"). For each i € I, pick z; € M such
that g(x;) = u(e;). Define v € Hom(N, M) by v: e; — a; for all ¢ € I. Then
g«(v) = u. O

3.5. Corollary. Let 0 — M’ LM & M7 = 0 be an ezact sequence. If M" is free,
then M ~ M' & M".

Proof. Exercise! O
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