
MODULES: THE BASICS

R. VIRK

Contents

1. Definitions and basic constructions 1
2. Exact sequences 3
3. Free modules 5

1. Definitions and basic constructions

1.1. Let A be a ring (commutative with 1). An A-module is an abelian group M
(written additively) on which A acts linearly. More precisely, it is a pair (M,µ),
where A is an abelian group and µ is a map A×M → M such that, if we write ax
for µ(a, x) (a ∈ A, x ∈ M), the following axioms are satisfied:

(i) a(x + y) = ax + ay;
(ii) (a + a′)x = ax + a′x;
(iii) (aa′)x = a(a′x);
(iv) 1x = x

for all a, a′ ∈ A and all x, y ∈ M .

1.2. Example. If A is a field k, then A-module = k-vector space.

1.3. Example. A Z-module is the same thing as an abelian group.

1.4. Example. An ideal a of A is an A-module. In particular, A itself is an A-module.

1.5. Example. Let A = k[x] where k is a field. Then an A-module is a k-vector
space M with a linear transformation M → M .

1.6. Example. The trivial group is an A-module (there is only one possible action).
It is denoted by 0.

1.7. Let M,N be A-modules. A map f : M → N is an A-module homomorphism
(or A-linear) if:

(i) f(x + y) = f(x) + f(y);
(ii) f(ax) = af(x)

for all a ∈ A and all x, y ∈ M . The composition of A-module homomorphisms is
again an A-module homomorphism.

1.8. Example. If A is a field, then an A-module homomorphism is the same thing
as a linear transformation of vector spaces.

1.9. Example. A Z-module homomorphism is the same thing as a homomorphism
of abelian groups.
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1.10. An A-module homomorphism f : M → N is an isomorphism (often denoted
f : M

∼−→ N) if there exists an A-module homomorphism f−1 : N → M such that
f ◦ f−1 and f−1 ◦ f are the identity map on N and M respectively.

1.11. Remark. If it is clear that I am talking about A-modules I will often abbreviate
‘A-module homomorphism’ to ‘morphism’. Further, M ' N will denote that M and
N are isomorphic.

1.12. Let M,N be A-modules. Then the set of all A-module homomorphisms
M → N can be turned into an A-module as follows: define f + g and af by the
rules

(f + g)(x) = f(x) + g(x), (af)(x) = af(x)
for all x ∈ M and a ∈ A. This A-module is denoted HomA(M,N) or just Hom(M,N)
(if there is no ambiguity about the ring A). Morphisms u : M ′ → M and v : N → N ′′

induce maps

u∗ : Hom(M,N) → Hom(M ′, N) and v∗ : Hom(M,N) → Hom(M,N ′′)

defined as follows:
u∗(f) = f ◦ u, v∗(f) = v ◦ f.

The maps u∗ and v∗ are A-module homomorphisms. For any A-module M there is a
natural isomorphism Hom(A,M) ' M : any A-module homomorphism f : A → M
is uniquely determined by f(1), which can be any element of M .

1.13. Let M be an A-module. A submodule M ′ of M is a subgroup of M which is
closed under multiplication by elements of A. The abelian group M/M ′ then inherits
an A-module structure from M , defined by a(x + M ′) = ax + M ′. The A-module
M/M ′ is the quotient of M by M ′. If f : M → N is an A-module homomorphism,
then the kernel of f is the set

ker(f) = {x ∈ M | f(x) = 0}
and is a submodule of M . If ker(f) = 0, then f is injective. The image of f is the
set

im(f) = f(M)
and is a submodule of N . If im(f) = N , then f is surjective. The cokernel of f is

coker(f) = N/im(f)

which is a quotient module of N . A morphism that is both injective and surjective
is an isomorphism:

1.14. Proposition (First isomorphism theorem). Let f : M → N be an A-module
homomorphism. Then f induces an isomorphism

im(f) ' M/ ker(f).

Proof. Exercise! �

1.15. Let M be an A module and let {Mi}i∈I be a family of submodules of M .
Their sum

∑
Mi is the set of all finite sums

∑
xi, where xi ∈ Mi for all i ∈ I and

almost all the xi are 0. The set
∑

Mi is a submodule of M . It is the smallest sub-
module of M which contains all the Mi. The intersection

⋂
Mi is also a submodule

of M .

1.16. Proposition (Second isomorphism theorem). If M1,M2 are submodules of
M , then

(M1 + M2)/M1 ' M2/(M1 ∩M2).

Proof. Exercise! �
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1.17. Proposition (Third isomorphism theorem). If N ⊆ M ⊆ L are A-modules,
then

(L/N)/(M/N) ' L/M.

Proof. Exercise! �

1.18. In general we cannot ‘multiply’ two submodules, but we can define aM ,
where a is an ideal of A and M is an A-module; it is the set of all finite sums∑

aixi with ai ∈ a, xi ∈ M , and is a submodule of M .

1.19. Let M be an A-module. The annihilator of M is

Ann(M) = {a ∈ A | ax = 0 for all x ∈ M}.

This is an ideal of A. Moreover, if a ⊆ Ann(M) is a sub-ideal, then we may regard
M as an A/a-module as follows: if a ∈ A/a is represented by a ∈ A, define ax to
be ax for all x ∈ M . This is independent of the choice of representative a, since
aM = 0.

1.20. If M,N are A-modules, their direct sum M ⊕N is the set of all pairs (x, y)
with x ∈ M , y ∈ N . This is an A-module with addition and multiplication defined
by:

(x1, y1) + (x2, y2) = (x1 + x2, y1 + y2) a(x, y) = (ax, ay).
More generally, if {Mi}i∈I is a family of A-modules, we define their direct sum⊕

i∈I Mi as follows: its elements are families (xi)i∈I such that xi ∈ Mi for each
i ∈ I and almost all the xi are 0. If we drop the restriction on the number of
non-zero xi’s, then we obtain the direct product

∏
i∈I Mi. Direct sum and direct

product are the same if the index set I is finite (but not otherwise, in general).

1.21. Proposition. Let M,N be submodules of L. If M + N = L and M ∩N = 0,
then L ' M ⊕N .

Proof. Define f : M ⊕N → L, (m,n) 7→ m + n. As M + N = L, f is surjective. If
f(m + n) = m + n = 0, then m = −n. Consequently, both m,n are in M ∩N . So,
m = n = 0. Hence, f is injective. �

2. Exact sequences

2.1. A sequence of A-modules and A-module homomorphisms

· · · fi−1−−−→ M i fi−→ M i+1 fi+1−−−→ · · ·

is said to be exact at M i if im(fi−1) = ker(fi). The sequence is exact if it is exact
at each Mi.

2.2. Example. 0 → M ′ f−→ M is exact if and only if f is injective.

2.3. Example. M
g−→ M ′′ → 0 is exact if and only if g is surjective.

2.4. Example. A sequence

0 → M ′ f−→ M
g−→ M ′′ → 0 (2.4.1)

is exact if and only if f is injective, g is surjective and g induces an isomorphism
of coker(f) = M/im(f) onto M ′′.

2.5. Remark. An exact sequence of type (2.4.1) is often called a short exact sequence.

The proof of the following result is not particularly enlightening, however it is a
good exercise in keeping many of the definitions so far straight.
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2.6. Proposition. Let

0 → M ′ f−→ M
g−→ M ′′

be a sequence of A-modules and morphisms. Then this sequence is exact if and only
if for all A-modules N , the sequence

0 → Hom(N,M ′)
f∗−→ Hom(N,M)

g∗−→ Hom(N,M ′′)

is exact.

Proof. First, assume 0 → M ′ f−→ M
g−→ M ′′ is exact. Let’s show exactness at

Hom(N,M ′). Let u ∈ ker(f∗), i.e., f ◦ u = 0. As f is injective, this implies u = 0.
That is, we have exactness at Hom(N,M ′). Let’s show exactness at Hom(N,M).
Let v ∈ im(f∗), i.e., v = f ◦ u′ for some u′ ∈ Hom(N,M ′). Then g∗(v) = g ◦ v =
g ◦ f ◦ u′ = 0, since im(f) = ker(g). Thus, im(f∗) ⊆ ker(g∗). On the other hand, if
v′ ∈ ker(g∗), then v′(y) ∈ ker(g) for all y ∈ N . As im(f) = ker(g) and f is injective,
for each y ∈ N there is a unique h(y) ∈ M ′ such that v′(y) = f(h(y)). The map
N → M ′, y 7→ h(y) is an A-module homomorphism. Indeed, for a ∈ A,

v′(ay) = av′(y) = af(h(y)) = f(ah(y)).

By the uniqueness of h(ay) we must have that h(ay) = ah(y). Similarly, if y′ is
another element in N , then

v′(y + y′) = v′(y) + v′(y′) = f(h(y)) + f(h(y′)) = f(h(y) + h(y′)).

And by the uniqueness of h(y + y′), we have h(y + y′) = h(y) + h(y′). Now v′ =
f ◦ h = f∗(h), i.e., ker(g∗) ⊆ im(f∗). Hence, we have exactness at Hom(N,M).

Now assume 0 → Hom(N,M ′)
f∗−→ Hom(N,M)

g∗−→ Hom(N,M ′′) is exact for all

A-modules N . Let’s show 0 → M ′ f−→ M
g−→ M ′′ is exact. For exactness at M ′, take

N = ker(f) and let i : ker(f) → M ′ be the inclusion map. Then f∗(i) = f ◦ i = 0.
As f∗ is injective this implies ker(f) = 0. Let’s show exactness at M . Take N = M
and let idM be the identity map on M . Then g ◦ f = g∗(f) = g∗f∗(idM ) = 0,
by exactness at Hom(N,M) = Hom(M,M). Hence, im(f) ⊆ ker(g). Now take
N = ker(g) and let j : ker(g) → M be the inclusion map. Then j ∈ ker(g∗), so
j = im(f∗), by exactness at Hom(N,M) = Hom(ker(g),M). That is, j = f ◦ k for
some k ∈ Hom(ker(g),M ′). Consequently, ker(g) ⊆ im(f). �

2.7. Example. If N ′ f−→ N
g−→ N ′′ → 0 is exact, then it is not necessarily true that

Hom(M,N ′)
f∗−→ Hom(M,N)

g∗−→ Hom(M,N ′′) → 0 is exact. For instance, consider
the exact sequence of Z-modules Z → Z/2Z → 0 where Z → Z/2Z is the obvious
quotient map. Then clearly Hom(Z/2Z,Z) → Hom(Z/2Z,Z/2Z) → 0 is not exact.

2.8. Proposition. Let

N ′ f−→ N
g−→ N ′′ → 0

be a sequence of A-modules and A-module homomorphisms. Then this sequence is
exact if and only if for all A-modules M , the sequence

0 → Hom(N ′′,M)
g∗−→ Hom(N,M)

f∗−→ Hom(N ′,M)

is exact.

Proof. Exercise! �
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3. Free modules

3.1. A free A-module is one which is isomorphic to an A-module of the form⊕
i∈I Mi, where each Mi ' A (as an A-module). A free module that is isomorphic

to A⊕ · · · ⊕ A (n summands) is said to have rank n. The module A⊕ · · · ⊕ A (n-
summands) is often denoted by A⊕n or An. By convention A⊕0 is the zero module.
The notion of rank is well defined:

3.2. Proposition. If A⊕n ' A⊕m, then m = n.

Proof. Exercise! Hint: let m be a maximal ideal of A and consider A/m. �

3.3. Example. A submodule of a free module need not be free. Even a direct
summand of a free module need not be free (M is a direct summand of L if
L ' M ⊕ N for some module N). For instance, let A = Z/6Z, then as an A-
module Z/6Z ' Z/2Z⊕Z/3Z. However, neither Z/2Z nor Z/3Z are free modules.

It is slightly harder to construct an example as above if we require A to be an
integral domain. Such an example is outlined in the problem set.

3.4. Proposition. Let 0 → M ′ f−→ M
g−→ M ′′ → 0 be an exact sequence of A-

modules. Let N be a free module. Then

0 → Hom(N,M ′)
f∗−→ Hom(N,M)

g∗−→ Hom(N,M ′′) → 0

is exact.

Proof. Prop. 2.6 gives exactness at Hom(N,M ′) and Hom(N,M). By definition,
N '

⊕
i∈I Ai. For each j ∈ I, let ej denote the image of 1 ∈ Aj ⊆

⊕
i∈I Ai

under this isomorphism. Let u ∈ Hom(N,M ′′). For each i ∈ I, pick xi ∈ M such
that g(xi) = u(ei). Define v ∈ Hom(N,M) by v : ei 7→ xi for all i ∈ I. Then
g∗(v) = u. �

3.5. Corollary. Let 0 → M ′ f−→ M
g−→ M ′′ → 0 be an exact sequence. If M ′′ is free,

then M ' M ′ ⊕M ′′.

Proof. Exercise! �
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