MODULES: THE BASICS

R. VIRK

Contents

1.	Definitions and basic constructions	1
2.	Exact sequences	3
3.	Free modules	5

1. Definitions and basic constructions

1.1. Let A be a ring (commutative with 1). An A-module is an abelian group M (written additively) on which A acts linearly. More precisely, it is a pair (M, μ) , where A is an abelian group and μ is a map $A \times M \to M$ such that, if we write ax for $\mu(a, x)$ $(a \in A, x \in M)$, the following axioms are satisfied:

(i) a(x + y) = ax + ay;(ii) (a + a')x = ax + a'x;(iii) (aa')x = a(a'x);(iv) 1x = x

for all $a, a' \in A$ and all $x, y \in M$.

1.2. Example. If A is a field k, then A-module = k-vector space.

1.3. Example. A Z-module is the same thing as an abelian group.

1.4. Example. An ideal a of A is an A-module. In particular, A itself is an A-module.

1.5. Example. Let A = k[x] where k is a field. Then an A-module is a k-vector space M with a linear transformation $M \to M$.

1.6. *Example.* The trivial group is an A-module (there is only one possible action). It is denoted by 0.

1.7. Let M, N be A-modules. A map $f: M \to N$ is an A-module homomorphism (or A-linear) if:

(i)
$$f(x+y) = f(x) + f(y);$$

(ii) $f(ax) = af(x)$

for all $a \in A$ and all $x, y \in M$. The composition of A-module homomorphisms is again an A-module homomorphism.

1.8. *Example.* If A is a field, then an A-module homomorphism is the same thing as a linear transformation of vector spaces.

1.9. *Example.* A **Z**-module homomorphism is the same thing as a homomorphism of abelian groups.

1.10. An A-module homomorphism $f: M \to N$ is an *isomorphism* (often denoted $f: M \xrightarrow{\sim} N$) if there exists an A-module homomorphism $f^{-1}: N \to M$ such that $f \circ f^{-1}$ and $f^{-1} \circ f$ are the identity map on N and M respectively.

1.11. Remark. If it is clear that I am talking about A-modules I will often abbreviate 'A-module homomorphism' to 'morphism'. Further, $M \simeq N$ will denote that M and N are isomorphic.

1.12. Let M, N be A-modules. Then the set of all A-module homomorphisms $M \to N$ can be turned into an A-module as follows: define f + g and af by the rules

$$(f+g)(x) = f(x) + g(x), \quad (af)(x) = af(x)$$

for all $x \in M$ and $a \in A$. This A-module is denoted $\operatorname{Hom}_A(M, N)$ or just $\operatorname{Hom}(M, N)$ (if there is no ambiguity about the ring A). Morphisms $u: M' \to M$ and $v: N \to N''$ induce maps

 $u^* \colon \operatorname{Hom}(M, N) \to \operatorname{Hom}(M', N) \text{ and } v_* \colon \operatorname{Hom}(M, N) \to \operatorname{Hom}(M, N'')$

defined as follows:

$$u^*(f) = f \circ u, \quad v_*(f) = v \circ f.$$

The maps u^* and v_* are A-module homomorphisms. For any A-module M there is a natural isomorphism $\text{Hom}(A, M) \simeq M$: any A-module homomorphism $f: A \to M$ is uniquely determined by f(1), which can be any element of M.

1.13. Let M be an A-module. A submodule M' of M is a subgroup of M which is closed under multiplication by elements of A. The abelian group M/M' then inherits an A-module structure from M, defined by a(x + M') = ax + M'. The A-module M/M' is the quotient of M by M'. If $f: M \to N$ is an A-module homomorphism, then the kernel of f is the set

$$\ker(f) = \{ x \in M \, | \, f(x) = 0 \}$$

and is a submodule of M. If ker(f) = 0, then f is *injective*. The *image* of f is the set

$$\operatorname{im}(f) = f(M)$$

and is a submodule of N. If im(f) = N, then f is surjective. The cokernel of f is coker(f) = N/im(f)

which is a quotient module of N. A morphism that is both injective and surjective is an isomorphism:

1.14. **Proposition** (First isomorphism theorem). Let $f: M \to N$ be an A-module homomorphism. Then f induces an isomorphism

$$\operatorname{im}(f) \simeq M/\ker(f)$$

Proof. Exercise!

1.15. Let M be an A module and let $\{M_i\}_{i \in I}$ be a family of submodules of M. Their sum $\sum M_i$ is the set of all finite sums $\sum x_i$, where $x_i \in M_i$ for all $i \in I$ and almost all the x_i are 0. The set $\sum M_i$ is a submodule of M. It is the smallest submodule of M which contains all the M_i . The *intersection* $\bigcap M_i$ is also a submodule of M.

1.16. **Proposition** (Second isomorphism theorem). If M_1, M_2 are submodules of M, then

$$(M_1 + M_2)/M_1 \simeq M_2/(M_1 \cap M_2).$$

Proof. Exercise!

1.17. **Proposition** (Third isomorphism theorem). If $N \subseteq M \subseteq L$ are A-modules, then

$$(L/N)/(M/N) \simeq L/M.$$

Proof. Exercise!

1.18. In general we cannot 'multiply' two submodules, but we can define $\mathfrak{a}M$, where \mathfrak{a} is an ideal of A and M is an A-module; it is the set of all finite sums $\sum a_i x_i$ with $a_i \in \mathfrak{a}, x_i \in M$, and is a submodule of M.

1.19. Let M be an A-module. The annihilator of M is

$$\operatorname{Ann}(M) = \{ a \in A \mid ax = 0 \text{ for all } x \in M \}.$$

This is an ideal of A. Moreover, if $\mathfrak{a} \subseteq \operatorname{Ann}(M)$ is a sub-ideal, then we may regard M as an A/\mathfrak{a} -module as follows: if $\overline{a} \in A/\mathfrak{a}$ is represented by $a \in A$, define $\overline{a}x$ to be ax for all $x \in M$. This is independent of the choice of representative a, since $\mathfrak{a}M = 0$.

1.20. If M, N are A-modules, their direct sum $M \oplus N$ is the set of all pairs (x, y) with $x \in M, y \in N$. This is an A-module with addition and multiplication defined by:

$$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$$
 $a(x, y) = (ax, ay).$

More generally, if $\{M_i\}_{i \in I}$ is a family of A-modules, we define their direct sum $\bigoplus_{i \in I} M_i$ as follows: its elements are families $(x_i)_{i \in I}$ such that $x_i \in M_i$ for each $i \in I$ and almost all the x_i are 0. If we drop the restriction on the number of non-zero x_i 's, then we obtain the *direct product* $\prod_{i \in I} M_i$. Direct sum and direct product are the same if the index set I is finite (but not otherwise, in general).

1.21. **Proposition.** Let M, N be submodules of L. If M + N = L and $M \cap N = 0$, then $L \simeq M \oplus N$.

Proof. Define $f: M \oplus N \to L, (m, n) \mapsto m + n$. As M + N = L, f is surjective. If f(m+n) = m + n = 0, then m = -n. Consequently, both m, n are in $M \cap N$. So, m = n = 0. Hence, f is injective.

2. Exact sequences

2.1. A sequence of A-modules and A-module homomorphisms

$$\cdots \xrightarrow{f_{i-1}} M^i \xrightarrow{f_i} M^{i+1} \xrightarrow{f_{i+1}} \cdots$$

is said to be exact at M^i if $im(f_{i-1}) = ker(f_i)$. The sequence is exact if it is exact at each M_i .

- 2.2. Example. $0 \to M' \xrightarrow{f} M$ is exact if and only if f is injective.
- 2.3. Example. $M \xrightarrow{g} M'' \to 0$ is exact if and only if g is surjective.
- 2.4. *Example*. A sequence

$$0 \to M' \xrightarrow{f} M \xrightarrow{g} M'' \to 0$$
 (2.4.1)

is exact if and only if f is injective, g is surjective and g induces an isomorphism of $\operatorname{coker}(f) = M/\operatorname{im}(f)$ onto M''.

2.5. Remark. An exact sequence of type (2.4.1) is often called a short exact sequence.

The proof of the following result is not particularly enlightening, however it is a good exercise in keeping many of the definitions so far straight.

2.6. Proposition. Let

$$0 \to M' \xrightarrow{f} M \xrightarrow{g} M''$$

be a sequence of A-modules and morphisms. Then this sequence is exact if and only if for all A-modules N, the sequence

$$0 \to \operatorname{Hom}(N, M') \xrightarrow{f_*} \operatorname{Hom}(N, M) \xrightarrow{g_*} \operatorname{Hom}(N, M'')$$

 $is \ exact.$

Proof. First, assume $0 \to M' \xrightarrow{f} M \xrightarrow{g} M''$ is exact. Let's show exactness at $\operatorname{Hom}(N, M')$. Let $u \in \ker(f_*)$, i.e., $f \circ u = 0$. As f is injective, this implies u = 0. That is, we have exactness at $\operatorname{Hom}(N, M')$. Let's show exactness at $\operatorname{Hom}(N, M)$. Let $v \in \operatorname{im}(f_*)$, i.e., $v = f \circ u'$ for some $u' \in \operatorname{Hom}(N, M')$. Then $g_*(v) = g \circ v = g \circ f \circ u' = 0$, since $\operatorname{im}(f) = \ker(g)$. Thus, $\operatorname{im}(f_*) \subseteq \ker(g_*)$. On the other hand, if $v' \in \ker(g_*)$, then $v'(y) \in \ker(g)$ for all $y \in N$. As $\operatorname{im}(f) = \ker(g)$ and f is injective, for each $y \in N$ there is a unique $h(y) \in M'$ such that v'(y) = f(h(y)). The map $N \to M', y \mapsto h(y)$ is an A-module homomorphism. Indeed, for $a \in A$,

$$v'(ay) = av'(y) = af(h(y)) = f(ah(y)).$$

By the uniqueness of h(ay) we must have that h(ay) = ah(y). Similarly, if y' is another element in N, then

$$v'(y+y') = v'(y) + v'(y') = f(h(y)) + f(h(y')) = f(h(y) + h(y')).$$

And by the uniqueness of h(y + y'), we have h(y + y') = h(y) + h(y'). Now $v' = f \circ h = f_*(h)$, i.e., $\ker(g_*) \subseteq \operatorname{im}(f_*)$. Hence, we have exactness at $\operatorname{Hom}(N, M)$.

Now assume $0 \to \operatorname{Hom}(N, M') \xrightarrow{f_*} \operatorname{Hom}(N, M) \xrightarrow{g_*} \operatorname{Hom}(N, M'')$ is exact for all *A*-modules *N*. Let's show $0 \to M' \xrightarrow{f} M \xrightarrow{g} M''$ is exact. For exactness at *M'*, take $N = \ker(f)$ and let *i*: $\ker(f) \to M'$ be the inclusion map. Then $f_*(i) = f \circ i = 0$. As f_* is injective this implies $\ker(f) = 0$. Let's show exactness at *M*. Take N = M and let id_M be the identity map on *M*. Then $g \circ f = g_*(f) = g_*f_*(\operatorname{id}_M) = 0$, by exactness at $\operatorname{Hom}(N, M) = \operatorname{Hom}(M, M)$. Hence, $\operatorname{im}(f) \subseteq \ker(g)$. Now take $N = \ker(g)$ and let $j: \ker(g) \to M$ be the inclusion map. Then $j \in \ker(g_*)$, so $j = \operatorname{im}(f_*)$, by exactness at $\operatorname{Hom}(N, M) = \operatorname{Hom}(\ker(g), M)$. That is, $j = f \circ k$ for some $k \in \operatorname{Hom}(\ker(g), M')$. Consequently, $\ker(g) \subseteq \operatorname{im}(f)$.

2.7. *Example.* If $N' \xrightarrow{f} N \xrightarrow{g} N'' \to 0$ is exact, then it is not necessarily true that $\operatorname{Hom}(M, N') \xrightarrow{f_*} \operatorname{Hom}(M, N) \xrightarrow{g_*} \operatorname{Hom}(M, N'') \to 0$ is exact. For instance, consider the exact sequence of \mathbf{Z} -modules $\mathbf{Z} \to \mathbf{Z}/2\mathbf{Z} \to 0$ where $\mathbf{Z} \to \mathbf{Z}/2\mathbf{Z}$ is the obvious quotient map. Then clearly $\operatorname{Hom}(\mathbf{Z}/2\mathbf{Z}, \mathbf{Z}) \to \operatorname{Hom}(\mathbf{Z}/2\mathbf{Z}, \mathbf{Z}/2\mathbf{Z}) \to 0$ is not exact.

2.8. Proposition. Let

$$N' \xrightarrow{f} N \xrightarrow{g} N'' \to 0$$

be a sequence of A-modules and A-module homomorphisms. Then this sequence is exact if and only if for all A-modules M, the sequence

$$0 \to \operatorname{Hom}(N'', M) \xrightarrow{g^*} \operatorname{Hom}(N, M) \xrightarrow{f^*} \operatorname{Hom}(N', M)$$

is exact.

Proof. Exercise!

3. Free modules

3.1. A free A-module is one which is isomorphic to an A-module of the form $\bigoplus_{i \in I} M_i$, where each $M_i \simeq A$ (as an A-module). A free module that is isomorphic to $A \oplus \cdots \oplus A$ (*n* summands) is said to have rank *n*. The module $A \oplus \cdots \oplus A$ (*n*-summands) is often denoted by $A^{\oplus n}$ or A^n . By convention $A^{\oplus 0}$ is the zero module. The notion of rank is well defined:

3.2. Proposition. If $A^{\oplus n} \simeq A^{\oplus m}$, then m = n.

Proof. Exercise! Hint: let \mathfrak{m} be a maximal ideal of A and consider A/\mathfrak{m} .

 \square

3.3. *Example.* A submodule of a free module need not be free. Even a direct summand of a free module need not be free (M is a direct summand of L if $L \simeq M \oplus N$ for some module N). For instance, let $A = \mathbb{Z}/6\mathbb{Z}$, then as an A-module $\mathbb{Z}/6\mathbb{Z} \simeq \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/3\mathbb{Z}$. However, neither $\mathbb{Z}/2\mathbb{Z}$ nor $\mathbb{Z}/3\mathbb{Z}$ are free modules.

It is slightly harder to construct an example as above if we require A to be an integral domain. Such an example is outlined in the problem set.

3.4. **Proposition.** Let $0 \to M' \xrightarrow{f} M \xrightarrow{g} M'' \to 0$ be an exact sequence of A-modules. Let N be a free module. Then

$$0 \to \operatorname{Hom}(N, M') \xrightarrow{f_*} \operatorname{Hom}(N, M) \xrightarrow{g_*} \operatorname{Hom}(N, M'') \to 0$$

 $is \ exact.$

Proof. Prop. 2.6 gives exactness at $\operatorname{Hom}(N, M')$ and $\operatorname{Hom}(N, M)$. By definition, $N \simeq \bigoplus_{i \in I} A_i$. For each $j \in I$, let e_j denote the image of $1 \in A_j \subseteq \bigoplus_{i \in I} A_i$ under this isomorphism. Let $u \in \operatorname{Hom}(N, M'')$. For each $i \in I$, pick $x_i \in M$ such that $g(x_i) = u(e_i)$. Define $v \in \operatorname{Hom}(N, M)$ by $v : e_i \mapsto x_i$ for all $i \in I$. Then $g_*(v) = u$.

3.5. Corollary. Let $0 \to M' \xrightarrow{f} M \xrightarrow{g} M'' \to 0$ be an exact sequence. If M'' is free, then $M \simeq M' \oplus M''$.

Proof. Exercise!

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, DAVIS, CA 95616 *E-mail address*: virk@math.ucdavis.edu