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Throughout we will work over an algebraically closed ground field .

1. CLOSED SUBSETS
1.1. Let X be an affine variety. If Z is a subset of X, set
I(Z) ={p € k[X]|p(z) =0 for all z € Z}.
If ¥ is a subset of k[X], set
zeroes(X) = {z € X |p(x) = 0 for all p € }.
1.2. A subset Z C X is called closed if Z = zeroes(X) for some subset ¥ C k[X].

1.3. Example. If X is an algebraic subset of k™, then closed subsets of X are precisely
algebraic subsets Z C k™ that are contained in X.

1.4. Let Z C X be a closed subset. Then we can and will define the structure of
an affine variety on Z by setting k[Z] = i*(k[X]), where i: Z — X is the inclusion
map. It is straightforward (= exercise) to verify that k[Z] ~ k[X]/I(Z) and that
this does indeed endow Z with the structure of an affine variety. It follows trivially
that the inclusion i: Z < X is a morphism of affine varieties. From here on any
mention of a closed subset as an affine variety is to be understood as just outlined.

1.5. Remark. All the results that we proved for the zeroes — I-correspondence in
the context of algebraic sets hold in our current setting (the proofs are exactly the
same). In our new language we may reformulate the results as follows. Let X be an
affine variety. Then:
(i) zeroes(0) = X and zeroes(1) = ). In particular, both X and the empty set
are closed subsets of X.
(ii) For any family of ideals a; C k[X], ¢ € I:

zeroes(U a;) = ﬂ zeroes(a;).
iel il
In particular, the intersection of any family of closed subsets is closed.
(iii) zeroes(anb) = zeroes(ab) = zeroes(a)Uzeroes(b) for any ideals a, b C k[X].
In particular, the union of any finite family of closed sets is closed.
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(iv) Let a,b C k[X] be ideals. If a C b, then zeroes(a) 2 zeroes(b).

(v) Let V,Z C X be closed subsets. If V C Z, then I(V) D I(Z).

(vi) (Nullstellensatz) If a C k[X] is an ideal, then I(zeroes(a)) = \/a, where
v/a denotes the radical of a.

1.6. Proposition. Let f: X — Y be a morphism of affine varieties and let Z CY
be closed. Then

f~HZ) = zeroes(f*(I(2))).
In particular, f~1(Z) is closed in X.

Proof. Exercise! O

1.7. Let X be an affine variety and let Z be a subset of X. The closure of Z in
X, denoted Z, is the smallest closed subset of X containing Z. More precisely:

7 = N V.
ZCV,

V closed in X

It is easy to see that Z = zeroes(I(Z)). The subset Z is said to be dense in X if
Z=X.

1.8. Proposition. Let f: X — Y be a morphism of affine varieties. Then f(X) =
zeroes(ker(f*)). In particular, f(X) is dense in'Y if and only if f* is injective

Proof. Tt suffices to show that I(f(X)) = ker(f*). Now p € I(f(X)) if and only if
f*p(x) =p(f(x)) =0forall z € X. Le., p € I(f(X)) if and only if f*p =0 O
2. DIGRESSION ON POINTS AND MAXIMAL IDEALS
2.1. Let X be an affine variety. For every x € X, define a k-algebra homomorphism
0zt k[X] =k, [ f(x)

Set m,, = ker(d,). Clearly, m, is a maximal ideal. By the Nullstellensatz, the as-

signment x — m,, gives a bijection

{points of X'} LN {maximal ideals in k[X]}.

2.2. Example. Identify A™ with k™ so that k[A"] = k[z1,...,z,]. Then we get that
the point (a1, ..., a,) € A™ corresponds to the maximal ideal (1 —ay, ..., T, —ay).

2.3. Proposition. Let f: X — Y be a morphism of affine varieties, and let x € X.
Then Myey) = f**l(mx).

Proof. By definition, my,y is the kernel of the composition k[Y] I, k[X] RIS
Hence, my(y) = f*H(m,). O

3. IRREDUCIBLE VARIETIES

3.1. An affine variety X is called irreducible if it is not the union of two proper
closed subsets. Le., if X = VUW with V,;\W C X closed, then either V = X or
W =X.

3.2. Ezample. The algebraic set given by the solutions to zy = 0 in k2 is not
irreducible (it is the union of the two axis). On the other hand Al is certainly
irreducible.

3.3. Proposition. X is irreducible if and only if k[X] is an integral domain.
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Proof. Let X be irreducible and let f,g € k[X] be such that fg = 0. Then X =
zeroes(0) = zeroes(fg) = zeroes(f) Uzeroes(g). As X is irreducible, without loss of
generality we may assume that zeroes(f) = X. Then 0 = I(X) = I(zeroes(f)) =
V'f, where \/f denotes the radical of the ideal generated by f. As f € \/f, we have
f=0.

Now let X be an affine variety such that k[X] is an integral domain. Suppose
X =VUW with VW C X closed. Then 0 = I(X) = I[(VUW) = I(V)NI(W). As
I(V)-IW) C I(V)NI(W), we infer that I(V) - I(W) = 0. But, X is an integral
domain. This means that 0 is a prime ideal. Hence, without loss of generality, we
may assume that (V) = 0. Therefore, V' = zeroes(I(V')) = zeroes(0) = X. O

4. COMPONENTS

4.1. Proposition. Let X be an affine variety. Then there exist finitely many irre-
ducible closed subsets X1,..., X, C X such that X; € X; for all i # j and

X=X1U---UX,.
Moreover, the X; are unique (up to renumbering of the indices).

Proof. If X is irreducible, then there is nothing to show. Otherwise, X = VUW with
V,W C X proper closed subsets of X. If V' and W are finite unions of irreducible
closed subsets, then so is X. Thus, if X were not a finite union of irreducible
closed subsets, then we could find a closed subset X; (either V or W) with the
same property. Continuing this way, we would obtain an infinite strictly decreasing
chain X D X; D Xy D -+ of closed subsets X;. This would yield an infinite strictly
ascending chain 0 C I(X;) € I(X2) € --- of ideals in k[X]. This is impossible, since
k[X] is Noetherian. Hence, X = X; U---U X, for some (finitely many) irreducible
closed subsets X; C X. Certainly, we may assume that X; ¢ X, for all 4 # j (if
X; € X, @ # j, just remove X; from the expression). Now let X = X{ U---U X/,
be another decomposition of this form. We need to show that each X/ is equal to
some X;s. As each X/ is irreducible, it follows (= exercise) that each X! C X/ for
some 4’. Similarly, each X; C in. for some j. So X C X;» C X7, which implies that

i = 4'. Consequently, X! = X. O

The X; appearing in the Proposition above are called the components (or irre-
ducible components) of X.

4.2. Example. The algebraic set given by the solutions to the polynomial xy = 0 in
k? has two components (the z and y axis) each of which is isomorphic to Al.

5. FINITE MORPHISMS

5.1. A morphism of affine varieties f: X — Y is called finite if f*: k[Y] — k[X]
is finite. In this situation we say that X is finite over Y. Finite morphisms are quite
interesting geometrically. We start with a preliminary result from commutative
algebra.

5.2. Lemma. Let B be a commutative ring and let A C B be a subring. Let m be a
mazimal ideal of A. If B is finite over A, then m = ANm’ for some mazximal ideal
m’ of B.

Proof. Exercise! Hint: use Nakayama’s lemma to show that mB # B. (]
5.3. Proposition. Let f: X — Y be a finite morphism of affine varieties.
(i) If Z C X is closed, then f(Z) is closed.

(ii) f is surjective if and only if f* is injective.
(iii) For ally €Y, f~(y) is a finite set.
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Proof. (i) Let i: Z — X be the inclusion map. If f*: k[Y] — k[X] is finite, then

so is the composition k[Y] EAR k[X] — k[Z]. Hence, we may assume that Z = X.
We will now show that f(X) = zeroes(ker(f*)). Via the identification of points
with maximal ideals (see §2)), f(X) consists of the maximal ideals f*~!(m) as m
runs through the maximal ideals of k[X], while zeroes(ker(f*)) consists of maximal
ideals of k[Y] containing ker(f*). Hence, it is clear that f(X) C zeroes(ker(f*)). To
show that zeroes(ker(f*)) C f(X), we need to demonstrate that any maximal ideal
of k[Y] containing ker(f*) is of the form f*~!(m) for some maximal ideal m C k[X].
This follows from Lemma [5.2]

(i) Using (i), f(X) = f(X) = zeroes(ker(f*)). Whence the result.

(iii) If f=%(y) = 0, then there is nothing to show. Otherwise, as for (i), we may
assume that X = f~!(y). Let i: {y} < Y be the inclusion map. Then f is the

composition X % {y} - Y, where a is the obvious map. As f* is finite, we infer
that a*: k — k[X] is finite. That is, k[X] is a finite dimensional k-vector space.
A k-algebra that is finite dimensional as a k-vector space has only finitely many
maximal ideals (exercisel!). O

5.4. Warning. If f: X — Y is a morphism of affine varieties such that f=1(y) is
a finite set, then it is not generally true that f is finite. For instance, consider the
projection of the hyperbola zy = 1 (in k?) on to the z-axis.

6. GEOMETRIC FORM OF NOETHER NORMALIZATION

6.1. Let X be an affine variety. By Noether Normalization, there exists k-subalgebra
A C k[X] such that A ~ k[A"] and k[X] is finite over A. In view of the discussion
in the previous section, this may be stated as:

6.2. Theorem (Geometric form of Noether Normalization). If X is an affine va-
riety, then there exists a surjective finite morphism X — A™.

6.3. Remark. For a brief discussion on the connection with Riemann surfaces, see
Ch. 10 §8 in Artin’s ‘Algebra’.
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