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Throughout we will work over an algebraically closed ground field k.

1. Closed subsets

1.1. Let X be an affine variety. If Z is a subset of X, set

I(Z) = {p ∈ k[X] | p(z) = 0 for all z ∈ Z}.
If Σ is a subset of k[X], set

zeroes(Σ) = {x ∈ X | p(x) = 0 for all p ∈ Σ}.

1.2. A subset Z ⊂ X is called closed if Z = zeroes(Σ) for some subset Σ ⊆ k[X].

1.3. Example. If X is an algebraic subset of kn, then closed subsets of X are precisely
algebraic subsets Z ⊆ kn that are contained in X.

1.4. Let Z ⊆ X be a closed subset. Then we can and will define the structure of
an affine variety on Z by setting k[Z] = i∗(k[X]), where i : Z ↪→ X is the inclusion
map. It is straightforward (= exercise) to verify that k[Z] ' k[X]/I(Z) and that
this does indeed endow Z with the structure of an affine variety. It follows trivially
that the inclusion i : Z ↪→ X is a morphism of affine varieties. From here on any
mention of a closed subset as an affine variety is to be understood as just outlined.

1.5. Remark. All the results that we proved for the zeroes − I-correspondence in
the context of algebraic sets hold in our current setting (the proofs are exactly the
same). In our new language we may reformulate the results as follows. Let X be an
affine variety. Then:

(i) zeroes(0) = X and zeroes(1) = ∅. In particular, both X and the empty set
are closed subsets of X.

(ii) For any family of ideals ai ⊆ k[X], i ∈ I:

zeroes(
⋃
i∈I

ai) =
⋂
i∈I

zeroes(ai).

In particular, the intersection of any family of closed subsets is closed.
(iii) zeroes(a∩b) = zeroes(ab) = zeroes(a)∪zeroes(b) for any ideals a, b ⊆ k[X].

In particular, the union of any finite family of closed sets is closed.
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(iv) Let a, b ⊆ k[X] be ideals. If a ⊆ b, then zeroes(a) ⊇ zeroes(b).
(v) Let V,Z ⊆ X be closed subsets. If V ⊆ Z, then I(V ) ⊇ I(Z).
(vi) (Nullstellensatz) If a ⊆ k[X] is an ideal, then I(zeroes(a)) =

√
a, where√

a denotes the radical of a.

1.6. Proposition. Let f : X → Y be a morphism of affine varieties and let Z ⊆ Y
be closed. Then

f−1(Z) = zeroes(f∗(I(Z))).

In particular, f−1(Z) is closed in X.

Proof. Exercise! �

1.7. Let X be an affine variety and let Z be a subset of X. The closure of Z in
X, denoted Z, is the smallest closed subset of X containing Z. More precisely:

Z =
⋂

Z⊆V,

V closed in X

V.

It is easy to see that Z = zeroes(I(Z)). The subset Z is said to be dense in X if
Z = X.

1.8. Proposition. Let f : X → Y be a morphism of affine varieties. Then f(X) =
zeroes(ker(f∗)). In particular, f(X) is dense in Y if and only if f∗ is injective

Proof. It suffices to show that I(f(X)) = ker(f∗). Now p ∈ I(f(X)) if and only if
f∗p(x) = p(f(x)) = 0 for all x ∈ X. I.e., p ∈ I(f(X)) if and only if f∗p = 0 �

2. Digression on points and maximal ideals

2.1. Let X be an affine variety. For every x ∈ X, define a k-algebra homomorphism

δx : k[X]→ k, f 7→ f(x).

Set mx = ker(δx). Clearly, mx is a maximal ideal. By the Nullstellensatz, the as-
signment x 7→ mx gives a bijection

{points of X} 1−1←−→ {maximal ideals in k[X]}.

2.2. Example. Identify An with kn so that k[An] = k[x1, . . . , xn]. Then we get that
the point (a1, . . . , an) ∈ An corresponds to the maximal ideal (x1−a1, . . . , xn−an).

2.3. Proposition. Let f : X → Y be a morphism of affine varieties, and let x ∈ X.
Then mf(x) = f∗−1(mx).

Proof. By definition, mf(x) is the kernel of the composition k[Y ]
f∗

−→ k[X] δx−→ k.
Hence, mf(x) = f∗−1(mx). �

3. Irreducible varieties

3.1. An affine variety X is called irreducible if it is not the union of two proper
closed subsets. I.e., if X = V ∪W with V,W ⊆ X closed, then either V = X or
W = X.

3.2. Example. The algebraic set given by the solutions to xy = 0 in k2 is not
irreducible (it is the union of the two axis). On the other hand A1 is certainly
irreducible.

3.3. Proposition. X is irreducible if and only if k[X] is an integral domain.



IRREDUCIBLE AFFINE VARIETIES, COMPONENTS AND FINITE MORPHISMS 3

Proof. Let X be irreducible and let f, g ∈ k[X] be such that fg = 0. Then X =
zeroes(0) = zeroes(fg) = zeroes(f)∪ zeroes(g). As X is irreducible, without loss of
generality we may assume that zeroes(f) = X. Then 0 = I(X) = I(zeroes(f)) =√

f , where
√

f denotes the radical of the ideal generated by f . As f ∈
√

f , we have
f = 0.

Now let X be an affine variety such that k[X] is an integral domain. Suppose
X = V ∪W with V,W ⊆ X closed. Then 0 = I(X) = I(V ∪W ) = I(V )∩ I(W ). As
I(V ) · I(W ) ⊆ I(V ) ∩ I(W ), we infer that I(V ) · I(W ) = 0. But, X is an integral
domain. This means that 0 is a prime ideal. Hence, without loss of generality, we
may assume that I(V ) = 0. Therefore, V = zeroes(I(V )) = zeroes(0) = X. �

4. Components

4.1. Proposition. Let X be an affine variety. Then there exist finitely many irre-
ducible closed subsets X1, . . . , Xn ⊆ X such that Xi 6⊆ Xj for all i 6= j and

X = X1 ∪ · · · ∪Xn.

Moreover, the Xi are unique (up to renumbering of the indices).

Proof. If X is irreducible, then there is nothing to show. Otherwise, X = V ∪W with
V,W ( X proper closed subsets of X. If V and W are finite unions of irreducible
closed subsets, then so is X. Thus, if X were not a finite union of irreducible
closed subsets, then we could find a closed subset X1 (either V or W ) with the
same property. Continuing this way, we would obtain an infinite strictly decreasing
chain X ) X1 ) X2 ) · · · of closed subsets Xi. This would yield an infinite strictly
ascending chain 0 ( I(X1) ( I(X2) ( · · · of ideals in k[X]. This is impossible, since
k[X] is Noetherian. Hence, X = X1 ∪ · · · ∪Xn, for some (finitely many) irreducible
closed subsets Xi ⊆ X. Certainly, we may assume that Xi 6⊆ Xj for all i 6= j (if
Xi ⊆ Xj , i 6= j, just remove Xi from the expression). Now let X = X ′

1 ∪ · · · ∪X ′
m

be another decomposition of this form. We need to show that each X ′
i is equal to

some Xi′ . As each X ′
i is irreducible, it follows (= exercise) that each X ′

i ⊆ Xi′ for
some i′. Similarly, each Xj ⊆ X ′

j
for some j. So X ′

i ⊆ Xi′ ⊆ X ′
i′
, which implies that

i = i′. Consequently, X ′
i = Xi′ . �

The Xi appearing in the Proposition above are called the components (or irre-
ducible components) of X.

4.2. Example. The algebraic set given by the solutions to the polynomial xy = 0 in
k2 has two components (the x and y axis) each of which is isomorphic to A1.

5. Finite morphisms

5.1. A morphism of affine varieties f : X → Y is called finite if f∗ : k[Y ] → k[X]
is finite. In this situation we say that X is finite over Y . Finite morphisms are quite
interesting geometrically. We start with a preliminary result from commutative
algebra.

5.2. Lemma. Let B be a commutative ring and let A ⊆ B be a subring. Let m be a
maximal ideal of A. If B is finite over A, then m = A∩m′ for some maximal ideal
m′ of B.

Proof. Exercise! Hint: use Nakayama’s lemma to show that mB 6= B. �

5.3. Proposition. Let f : X → Y be a finite morphism of affine varieties.
(i) If Z ⊆ X is closed, then f(Z) is closed.
(ii) f is surjective if and only if f∗ is injective.
(iii) For all y ∈ Y , f−1(y) is a finite set.
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Proof. (i) Let i : Z ↪→ X be the inclusion map. If f∗ : k[Y ] → k[X] is finite, then

so is the composition k[Y ]
f∗

−→ k[X] i∗−→ k[Z]. Hence, we may assume that Z = X.
We will now show that f(X) = zeroes(ker(f∗)). Via the identification of points
with maximal ideals (see §2), f(X) consists of the maximal ideals f∗−1(m) as m
runs through the maximal ideals of k[X], while zeroes(ker(f∗)) consists of maximal
ideals of k[Y ] containing ker(f∗). Hence, it is clear that f(X) ⊆ zeroes(ker(f∗)). To
show that zeroes(ker(f∗)) ⊆ f(X), we need to demonstrate that any maximal ideal
of k[Y ] containing ker(f∗) is of the form f∗−1(m) for some maximal ideal m ⊆ k[X].
This follows from Lemma 5.2.

(ii) Using (i), f(X) = f(X) = zeroes(ker(f∗)). Whence the result.
(iii) If f−1(y) = ∅, then there is nothing to show. Otherwise, as for (i), we may

assume that X = f−1(y). Let i : {y} ↪→ Y be the inclusion map. Then f is the
composition X

a−→ {y} i−→ Y , where a is the obvious map. As f∗ is finite, we infer
that a∗ : k → k[X] is finite. That is, k[X] is a finite dimensional k-vector space.
A k-algebra that is finite dimensional as a k-vector space has only finitely many
maximal ideals (exercise!). �

5.4. Warning. If f : X → Y is a morphism of affine varieties such that f−1(y) is
a finite set, then it is not generally true that f is finite. For instance, consider the
projection of the hyperbola xy = 1 (in k2) on to the x-axis.

6. Geometric form of Noether normalization

6.1. Let X be an affine variety. By Noether Normalization, there exists k-subalgebra
A ⊆ k[X] such that A ' k[An] and k[X] is finite over A. In view of the discussion
in the previous section, this may be stated as:

6.2. Theorem (Geometric form of Noether Normalization). If X is an affine va-
riety, then there exists a surjective finite morphism X → An.

6.3. Remark. For a brief discussion on the connection with Riemann surfaces, see
Ch. 10 §8 in Artin’s ‘Algebra’.

Department of Mathematics, University of California, Davis, CA 95616
E-mail address: virk@math.ucdavis.edu


	1. Closed subsets
	2. Digression on points and maximal ideals
	3. Irreducible varieties
	4. Components
	5. Finite morphisms
	6. Geometric form of Noether normalization

