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I suggest that at first reading you skip the proofs of Noether Normalization
(Thm. 3.1) and the Nullstellensatz (Thm. 3.5). Come back to them later once you
have a feel for the overall picture being sketched below.

1. Algebraic sets

1.1. From now on, unless explicitly stated otherwise, k will denote an algebraically
closed field, known as the ground field.

1.2. An algebraic subset of kn is a subset of the form

zeroes(Σ) = {(a1, . . . , an) ∈ kn | f(a1, . . . , an) = 0 for all f ∈ Σ},
where Σ is a subset of k[x1, . . . , xn].

1.3. Remark. Note that zeroes(Σ) = zeroes(aΣ), where aΣ denotes the ideal gener-
ated by Σ. Now ideals in k[x1, . . . , xn] are finitely generated, so an algebraic subset
is the set of simultaneous solutions of a finite number of polynomial equations.

1.4. Example. zeroes(0) = kn, this algebraic set is denoted An and is called affine
n-space. A1 is often called the affine line and A2 is often called the affine plane.

1.5. Example. Let C = {(t2, t3) ∈ k2 | t ∈ k}. Then C is an algebraic set, since it is
the set of solutions (in k2) to x3 − y2 = 0.

1.6. By definition, zeroes gives a map

{ideals of k[x1, . . . , xn]} zeroes−−−−→ {algebraic subsets of kn}.
There is a correspondence going the other way:

{algebraic subsets of kn} I−→ {ideals of k[x1, . . . , xn]},
defined by

I(X) = {f ∈ k[x1, . . . , xn] | f(a) = 0 for all a ∈ X}.
The correspondences I and V enjoy a number of useful properties that I will state
in a moment. First, recall that if a is an ideal in a ring A, then the radical of a is

√
a = {f ∈ A | fn ∈ a for some n ∈ Z≥0}.

1.7. Proposition. We have
1
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(i) zeroes(0) = kn and zeroes(1) = ∅.
(ii) For any family of ideals ai ∈ k[x1, . . . , xn], i ∈ I:

zeroes(
⋃
i∈I

ai) =
⋂
i∈I

zeroes(ai).

(iii) zeroes(a ∩ b) = zeroes(ab) = zeroes(a) ∪ zeroes(b) for any ideals a, b ⊆
k[x1, . . . , xn].

(iv) Let a, b ⊆ k[x1, . . . , xn] be ideals. If a ⊆ b, then zeroes(b) ⊆ zeroes(a).
(v) Let X, Y ⊆ kn be algebraic sets. If X ⊆ Y , then I(Y ) ⊆ I(X).
(vi) zeroes(I(X)) = X for all algebraic sets X ⊆ kn.
(vii)

√
a ⊆ I(zeroes(a)) for all ideals a ⊆ k[x1, . . . , xn].

Proof. Exercise! �

1.8. Remark. The containment in (vii) above can be upgraded to an equality. How-
ever, this is not quite trivial to show. We will do so in a bit.

2. Morphisms and the coordinate ring

2.1. Morphisms are fascinating! A morphism of algebraic sets X → Y is a poly-
nomial map X → Y . That is, if X ⊆ kn and Y ⊆ km are algebraic sets (note that
X and Y don’t necessarily live in the same ambient space), then a map f : X → Y
is a morphism if there exist polynomials f1, . . . , fm ∈ k[x1, . . . , xm] such that

f(a) = (f1(a1, . . . , an), . . . , fm(a1, . . . , an))

for all points a = (a1, . . . , an) ∈ X. A morphism f : X → Y is an isomorphism if
there exists a morphism g : Y → X such that gf and fg are the identity on X and
Y respectively.

2.2. Warning. A bijective morphism need not be an isomorphism: let C ⊂ k2 be
the algebraic set defined by the ideal (x3 − y2) ∈ k[x, y]. That is, C is the set of
solutions to the equation x3−y2 = 0. Define a morphism f : A1 → C by t 7→ (t2, t3).
This morphism is a bijection. However, it is not an isomorphism (why not?).

2.3. Let X ⊆ kn be an algebraic set. Then the quotient ring k[x1, . . . , xn]/I(X)
is in a natural way a ring of functions on X. In more detail, define a polynomial
function on X to be a map f : X → k of the form (a1, . . . , an) 7→ F (a1, . . . , an),
with F ∈ k[x1, . . . , xn]. Equivalently, a polynomial function on X is a morphism
X → A1. Regardless, all of this just means that f is defined by a polynomial. Now
two polynomials f1, f2 ∈ k[x1, . . . , xn] define the same function on X if and only
if f1 − f2 vanishes on X, i.e., f1 − f2 ∈ I(X). Thus, we define the coordinate ring
k[X] by

k[X] = {polynomial functions X → k} = k[x1, . . . , xn]/I(X).

2.4. Let f : X → Y be a morphism of algebraic sets. Define

f∗ : k[Y ] → k[X] by f∗g(x) = g(f(x)).

To clarify: suppose f is given by

(x1, . . . , xn) 7→ (f1(x1, . . . , xn), . . . , fm(x1, . . . , xn))

for some polynomials fi. Then, for g ∈ k[y1, . . . , yn]/I(Y ),

f∗g evaluated at (x1, . . . , xn) = g evaluated at (f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)).
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2.5. Example. Let C ⊂ k2 be the set of solutions of the polynomial x3 − y2 = 0, so
that k[C] = k[x, y]/(x3 − y2). Define f : A1 → C, t 7→ (t2, t3). Then

f∗ : k[x, y]/(x3 − y2) → k[A1] = k[z] is given by x 7→ z2, y 7→ z3.

Note that I haven’t justified why k[C] = k[x, y]/(x3 − y2). Nevertheless, it is true
(exercise!). Do note that this is by no means an obvious fact, the necessary tools
required to show this will be developed in the next section.

2.6. Proposition. The assignment f 7→ f∗ gives a canonical bijection

{morphisms X → Y } ↔ {k-algebra homomorphisms k[Y ] → k[X]}.

Proof. By the definition of an algebraic set: X ⊆ kn, Y ⊆ km, and k[X] =
k[x1, . . . , xn]/I(X), k[Y ] = k[y1, . . . , ym]/I(Y ). For a k-algebra homomorphism
g : k[Y ] → k[X], write gi for g(yi), i = 1, . . . ,m. Define g∨ : X → Y by

g∨(a1, . . . , an) = (g1(a1, . . . , an), . . . , gm(a1, . . . , an)).

This is well defined: gi is uniquely defined modulo I(X) and every element of I(X)
vanishes on (a1, . . . , an) ∈ X. Certainly, g∨ is a morphism of algebraic sets. Further,
if f ∈ k[y1, . . . , ym]/I(Y ), then

f(g1(a1, . . . , an), . . . , gm(a1, . . . , an)) = g(f) evaluated at (a1, . . . , an).

In particular, g∨ lands in Y and (g∨)∗ = g. Finally, if h : X → Y is a morphism
given by (a1, . . . , an) 7→ (h1(a1, . . . , an), . . . , hm(a1, . . . , an)), then

(h∗)∨(a1, . . . , an) = (h∗1(a1, . . . , an), . . . , h∗m(a1, . . . , an))

= (h1(a1, . . . , an), . . . , hm(a1, . . . , an))

= h(a1, . . . , an).

Hence, (h∗)∨ = h. To summarize, we have shown that the assignment g 7→ g∨ is
inverse to the assignment f 7→ f∗. �

2.7. Proposition. Let X
f−→ Y

g−→ Z be morphisms of algebraic sets. Then

(g ◦ f)∗ = f∗ ◦ g∗.

Proof. To avoid confusion, for a set S and a function F : S → k, write 〈F, s〉 for F
evaluated at s ∈ S. Let p ∈ k[Z] and x ∈ X. Then

〈(g ◦ f)∗p, x〉 = 〈p, gf(x)〉 = 〈g∗p, f(x)〉 = 〈f∗(g∗p), x〉.

That is, (g ◦ f)∗ = f∗ ◦ g∗. �

2.8. Remark. The result above is essentially just the fact that composition of maps
is associative.

2.9. Corollary. A morphism of algebraic sets f : X → Y is an isomorphism if and
only if f∗k[Y ] → k[X] is an isomorphism of k-algebras.

Proof. Exercise! �

3. Noether Normalization and the Nullstellensatz

3.1. Theorem (Noether Normalization). Let A be a finitely generated algebra over
a field k (not necessarily algebraically closed). Then there exist x1, . . . , xn ∈ A
algebraically independent over k (this means that the homomorphism from the poly-
nomial ring k[t1, . . . , tn] to A given by ti 7→ xi is injective) such that A is finite
over B = k[z1, . . . , zm].
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Proof. As A is a finitely generated algebra over k we may assume that A =
k[y1, . . . , ym]/p for some ideal a. If a = 0, then there is nothing to prove so assume
otherwise. Let f(y1, . . . , ym) ∈ a be non-zero. Let r1, . . . , rm be positive integers,
and let

z2 = y2 − yr2
1 , z3 = y3 − yr3

1 , · · · , zm = ym − yrm
1 .

Then f(y1, z2 + yr2
1 , . . . , zm + yrm

1 ) = 0 in A. Now the polynomial f(y1, . . . , ym) is
the sum of monomial terms of the form ayb1

1 · · · ybm
m , a ∈ k−{0}. Each of these terms

gives rise to various new monomial terms in the polynomial f(y1, z2 +yr2
1 , . . . , zm +

yrm
1 ) = 0, including some terms of the form ayb1+r2b2+···+rmbm

1 which may cancel
each other out. However, a moment’s reflection should convince you that if we pick
the ri’s large enough and increasingly rapidly enough: 0 � r2 � r3 � · · · � rm,
then these new terms ayb1+r2b2+···+rmbm

1 will have distinct degrees, and one of them
will emerge as the term of highest degree in this new polynomial. Thus,

f(y1, z2 + yr2
1 , . . . , zm + yrm

1 ) = ayN
1 + terms of degree < N,

with a 6= 0. Thus, f(y1, z2 + yr2
1 , . . . , zm + yrm

1 ) = 0 in A gives an equation
of integral dependence for y1 over k[z2, . . . , zm]. Further, A is integrally depen-
dent on k[y1, z2, . . . , zm], since yi = zi + yri . Hence, A is integrally dependant on
k[z2, . . . , zm]. Now repeat the procedure outlined above for k[z2, . . . , zm]. �

3.2. Proposition. Let B be an integral domain and let A ⊆ B be a subring. Assume
that B is integral over A. Show that A is a field if and only if B is a field.

Proof. Exercise! �

3.3. Theorem (Weak Nullstellensatz). Let k be an algebraically closed field. Then
the maximal ideals in the ring k[x1, . . . , xn] are the ideals

(x1 − a1, x2 − a2, . . . , xn − an),

where a1, . . . , an ∈ k.

Proof. Let m ⊂ k[x1, . . . , xn] be a maximal ideal and set k′ = k[x1, . . . , xn]/m.
Then k′ is a field extension of k. We need to show that k′ = k. As k is algebraically
closed, it suffices to show that k′ is a finite (and hence algebraic) extension of k.
Certainly, k′ is a finitely generated k-algebra. So, by Noether Normalization, there
exists a k-subalgebra A ⊆ k′ that is isomorphic to a polynomial ring and is such
that k′ is finite over A (and hence also integral over A, see Prop. 2.5 and Remark 2.6
in the previous week’s notes). By Prop. 3.2, A is a field. But, the only polynomial
ring over k that is a field is the ring of polynomials in zero variables! That is, we
must have A = k. �

3.4. Corollary. Let a ⊆ k[x1, . . . , xn] be an ideal. Then zeroes(a) = ∅ if and only
if a = k[x1, . . . , xn].

Proof. It is obvious that if a = k[x1, . . . , xn], then zeroes(a) = 1 (see (i) of the
previous proposition). The interesting part is to show that if a is a proper ideal,
then zeroes(a) 6= ∅. If a is a proper ideal, then there exists some maximal ideal
m containing a. By the Weak Nullstellensatz, we have zeroes(m) 6= ∅. Using (iv)
of the previous proposition we infer zeroes(m) ⊆ zeroes(a). Hence, zeroes(a) is not
empty. �

3.5. Theorem (Nullstellensatz). Let a ⊆ k[x1, . . . , xn] be an ideal. Then

I(zeroes(a)) =
√

a.
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Proof. Let f1(x1, . . . , xn), . . . , fm(x1, . . . , xn) be generators of a. We need to show
that if g(x1, . . . , xn) is a polynomial satisfying g(a1, . . . , an) = 0 for every point
(a1, . . . , an) ∈ kn such that

f1(a1, . . . , an) = f2(a1, . . . , an) = · · · = fm(a1, . . . , an) = 0,

then g(x1, . . . , xn)N ∈ a for some N ∈ Z≥0. This requires a clever trick (called the
Rabinowitsch trick): we work in the polynomial ring k[x1, . . . , xn, t] and consider
the ideal b ⊆ k[x1, . . . , xn, t] generated by f1(x1, . . . , xn), . . . , fm(x1, . . . , xn) and
1−tg(x1, . . . , xn). I claim that b = k[x1, . . . , xn, t]. To see this consider V (b) ⊆ kn+1.
This algebraic set is the intersection of the set

{(a0, . . . , an, b) | (a0, . . . , an) ∈ zeroes(a) ⊆ kn, b ∈ k)}

with the set

{(a0, . . . , an,
1

g(a0, . . . , an)
) | (a0, . . . , an) ∈ kn, g(a0, . . . , an) 6= 0}.

But, by assumption, g(x1, . . . , xn) vanishes on zeroes(a). Thus, this intersection is
empty, i.e., zeroes(b) = ∅. Hence, b = k[x1, . . . , xn, t] by Cor. 3.4.

We now infer that there exist polynomials p1(x1, . . . , xn, t), . . . , pm+1(x1, . . . , xn, t)
such that

1 =
m∑

i=1

pi(x1, . . . , xn, t)fi(x1, . . . , xn) + pm+1(x1, . . . , xn, t)(1− tg(x1, . . . , xn)).

This gives us the following relation in the quotient ring k[x1, . . . , xn, t]/(1− tg):

1 =
m∑

i=1

pi(x1, . . . , xn, t)fi(x1, . . . , xn).

Multiplying by a sufficiently large power N of g(x1, . . . , xn) we obtain an relation,
in k[x1, . . . , xn, t]/(1− tg), of the form

g(x1, . . . , xn)N =
m∑

i=1

ri(x1, . . . , xn)fi(x1, . . . , xn),

for some appropriate polynomials ri(x1, . . . , xn). We may and will assume that
g(x1, . . . , xn) is not the zero polynomial (otherwise there would have been nothing
to prove in the first place). Then the map k[x1, . . . , xn] → k[x1, . . . , xn, t]/(1− tg),
h(x1, . . . , xn) 7→ h(x1, . . . , xn), is injective (why?) and hence the expression above
is valid in k[x1, . . . , xn]. In other words, g(x1, . . . , xn) ∈

√
a. �

4. Affine varieties

4.1. Talking about algebraic sets can be a bit cumbersome, since we have to always
refer to an ambient space kn that an algebraic set sits in. Don’t get me wrong, this
can be extremely convenient when we need to get our hands dirty and explicitly
compute something. This is analogous to the tension between matrices and linear
transformations (they are the same thing but sometimes it is convenient to not pick
a basis and work with the abstract notion of a linear transformation as opposed to
a matrix). I am about to free algebraic sets from the tyranny of an ambient space
by defining an affine variety. But, for practical purposes, you will not miss much if
you put ‘affine variety = algebraic set’. Prop. 2.6 and Cor. 2.9 tell us that algebraic
sets are determined up to isomorphism by their coordinate rings. So it makes sense
to make the following definition:
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4.2. An affine variety (over k) is a set V , together with a ring of k-valued functions
k[V ] (addition and multiplication defined point wise), such that:

(i) k[V ] is a finitely generated algebra over k.
(ii) For some choice of generators t1, . . . , tn ∈ k[V ], called coordinate functions,

the map
V → kn, v 7→ (t1(v), . . . , tn(v)),

embeds V as an algebraic subset of kn.

4.3. Example. Let Gm be the affine variety given as follows: as a set Gm consists of
the non-zero elements in k, k[Gm] = k[t, t−1], where t(a) = a for all a ∈ Gm. The
coordinate functions are t and t−1, so that a 7→ (t(a), t−1(a)) = (a, a−1) embeds
Gm in k2 as the set of solutions to the polynomial equation xy − 1 = 0.

4.4. Remark. The affine variety Gm is one of the simplest examples of an ‘affine
algebraic group’. Roughly, an affine algebraic group is an affine variety whose un-
derlying points have a group structure compatible with the variety structure.

4.5. I should certainly also define a morphism of affine varieties. Of course, the
definition is completely dictated by ‘affine variety = algebraic set’. A morphism of
affine varieties V → W is a map of sets f : V → W such that, for p ∈ k[W ], the
assignment p 7→ f∗p defines a k-algebra homomorphism k[W ] → k[V ]. As before,
f∗p(v) = p(f(v)).

5. Commercial break

We have established a bridge between algebra and geometry:

{finitely generated k-algebras with no nilpotents} ↔ {affine varieties}.
The goal for the remainder of this course is to send some fairly lightweight traf-
fic both ways across this bridge. The type of questions that we want to address
are: what do injections/surjections on one side correspond to on the other? What
type of geometry corresponds to an integral domain, PID, UFD, Dedekind do-
main? What type of ring corresponds to a curve or a hypersurface? What ‘is’ a
curve/hypersurface? What is the geometry of integral/finite maps? What is the
algebra of geometric notions like ‘tangent’, ‘smooth’ or ‘dimension’? Of course, we
are only going to have the time to discuss one or two of these questions. I hope you
will find this synthesis of algebra and geometry amazing (and a bit overwhelming!)
and at some point decide to learn more than can feasibly be tackled in what time
we have left. I want to make one final remark that ‘officially’ has nothing to do with
the course (and should probably be ignored).

We have defined varieties only with the adjective ‘affine’. A variety is, roughly
speaking, a space that locally looks like an affine variety (this is analogous to how
a sphere locally looks like R2). Further, some of you may have heard of schemes
(probably in dark corridors and in hushed tones). What we have called an affine
variety is a reduced separated affine scheme of finite type over an algebraically
closed field (is anyone actually reading this? prone to headaches much?). I mention
this since for different authors ‘affine variety’ often means different things. Some
authors define an affine variety to be an algebraic set X such that I(X) is a prime
ideal. These will correspond to what we will call irreducible affine varieties. So, some
care should be exercised when exploring the literature. Finally, with our definition
of affine variety we are essentially studying rings with no nilpotents. An (affine)
scheme is what you would get if you seriously pursued the (a priori absurd) point
of view that every ring is the ring of functions on some geometric object.
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