
SOME NOTIONS FROM COMMUTATIVE ALGEBRA

R. VIRK

All rings will be commutative with 1.

1. Algebras

1.1. Let f : A → B be a ring homomorphism. If a ∈ A and b ∈ B, define a product

ab = f(a)b.

This definition of scalar multiplication makes the ring B into an A-module. Thus,
B has an A-module structure as well as a ring structure. These structures are
compatible in an obvious sense. The ring B, equipped with this A-module structure,
is said to be an A-algebra. So, an A-algebra is, by definition, a ring B together with
a ring homomorphism f : A → B.

1.2. Example. Let k be a field. Then a k-algebra is effectively a ring containing k
as a subring. For instance, the polynomial ring k[x1, . . . , xn].

1.3. Let B,B′ be A-algebras. A morphism of A-algebras or an A-algebra homo-
morphism φ : B → B′ is a ring homomorphism which is also an A-module homo-
morphism.

1.4. A ring homomorphism f : A → B is finite, and B is said to be finite over A,
if B is finitely generated as an A-module.

1.5. A ring homomorphism f : A → B is of finite type, and B is said to be a
finitely generated algebra over A, if there exists a finite set of elements x1, . . . , xn

in B such that every element of B can be written as a polynomial in x1, . . . , xn with
coefficients in f(A). This is equivalent to requiring a surjective A-algebra morphism
from a polynomial ring A[t1, . . . , tn] onto B.

2. Finite vs. integral

2.1. The following result and its proof should be reminiscient of Nakayama’s
lemma (actually Nakayama’s lemma is a special case of this result).

2.2. Lemma (Determinant trick). Let A be a ring and M an A[t]-module that is
finitely generated as an A-module. Suppose a is an ideal of A such that A[t]M ⊆ aM .
Then the action of t on M satisfies a relation of the form

tn + a1t
n−1 + · · ·+ an = 0,

where each ai ∈ ai.

Proof. Let v1, . . . , vn be a set of generators for M . As A[t]M ⊆ aM we obtain
equations of the form

tvi =
∑

j

aijvj , with aij ∈ a.

These can be rewritten as ∑
j

(aij − δijt)vj = 0.
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Let T be the n × n-matrix with (i, j)-th entry (aij − δijt). Then the determinant
of this matrix gives an expression of the required form. �

2.3. Let B be an A-algebra. An element y ∈ B is integral over A if there exists a
monic polynomial f(x) ∈ A[x] such that f(y) = 0. The algebra B is integral over
A (or B is an integral extension of A) if every b ∈ B is integral.

2.4. Example. Let F ⊃ K be a field extension. Then F is integral over K if and
only if F is algebraic over K.

2.5. Proposition. Let B be an A-algebra and let y ∈ B. The following conditions
are equivalent:

(i) y is integral over A.
(ii) The subring A[y] ⊆ B generated by A and y is finite over A.
(iii) There exists an A-subalgebra C ⊆ B such that A[y] ⊆ C and C is finite

over A.

Proof. That (i) implies (ii) is left as an exercise (Hint: there is a similar statement
for field extensions that we proved earlier). That (ii) implies (iii) is obvious. Let’s
show that (iii) implies (i). The algebra C is an A[t]-module via p(t) · x = p(y)x,
p(t) ∈ A[t], x ∈ C. As C is finite over A, by the determinant trick we obtain a
relation

yn + an−1y
n−1 + · · ·+ a0 = 0, with ai ∈ A. �

2.6. Remark. The point of the above result is that for an A-algebra B,

finite type + integral over A = finite over A.

3. Tower laws

3.1. Proposition. Let B be an A-algebra and let C be a B-algebra (note that this
gives an A-algebra structure on C). If C is finite over B and B is finite over C,
then C is finite over A.

Proof. Exercise! Hint: there is a similar statement for field extensions. �

3.2. Proposition. Let B be an A-algebra and let C be a B-algebra (note that this
gives an A-algebra structure on C). If C is integral over B and B is integral over
A, then C is integral over A.

Proof. Let x ∈ C. As C is integral over B, we have a relation

xn + bn−1x
n−1 + · · ·+ b0, with bi ∈ B.

As each bi is integral over A, A[b0, . . . , bn−1] is finite over A by the previous Propo-
sition. By Prop. 2.5, A[b0, . . . , bn−1, x] is finite over A[b0, . . . , bn−1]. Hence, by the
previous Proposition, A[b0, . . . , bn−1, x] is finite over A. So, by Prop. 2.5, x is inte-
gral over A. �
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