MOTIVIC LERAY-HIRSCH

RAHBAR VIRK

Write $DM(k; \Lambda)$ for the triangulated category of motives, over a field k, with Λ -coefficients [CD, Definition 11.1.1]. Write 'scheme' in lieu of 'separated scheme of finite type over k'. There is a covariant functor $X \mapsto M^c(X)$ from the category of schemes and proper morphisms to $DM(k; \Lambda)$ (in the notation of [CD], $M^c(X) = a_*a^!\Lambda$, where $a: X \to \text{Spec}(k)$ is the structure morphism). The functor $M^c(X)$ behaves like a Borel-Moore homology theory. The category $DM(k; \Lambda)$ is a symmetric monoidal triangulated category, and $M^c(X \times Y) = M^c(X) \otimes M^c(Y)$. The motive $M^c(\text{Spec}(k))$ is the unit object. It is convenient to set $\Lambda = M^c(\text{Spec}(k))$. Let $H^i_M(X; \Lambda(j))$ denote the motivic cohomology groups of X, as defined in [CD, §11.2]. These are contravariant functors from the category of schemes to Λ -modules. Each $e \in H^i(X; \Lambda(j))$ determines a canonical map

$$e\cap: M^c(X)(-j)[-i] \to M^c(X).$$

Proposition 0.1 (Leray-Hirsch). Let $p: X \to Y$ be a morphism of schemes. Assume that *Y* may be covered by open subschemes U_i such that:

- (i) for each U_i, there is a finite étale morphism f_i: V_i → U_i, with degree invertible in Λ, such that X ×_Y V_i ≃ V_i × F, for some fixed scheme F;
- (ii) $M^{c}(F)$ is a direct sum of Tate motives;
- (iii) there exist $e_1, \ldots, e_n \in H^{2*}(X; \Lambda(*))$ that restrict to a basis of $H^{2*}(F; \Lambda(*))$ for each fibre inclusion $F \to X$.

Then there is an isomorphism

$$M^c(X) \simeq M^c(Y) \otimes M^c(F).$$

Proof. Let d_i denote the degree of e_i . Set $d = \dim(F)$. Each e_i determines a map

$$M^{c}(Y)(d-d_{i})[2(d-d_{i})] \xrightarrow{p} M^{c}(X)(-d_{i})[-2d_{i}] \xrightarrow{e_{i}\cap} M^{c}(X).$$

Summing these, we obtain a map

$$\bigoplus_{i} M^{c}(Y)(d-d_{i})[2(d-d_{i})] \to M^{c}(X).$$

As *F* is a direct sum of Tate motives, this may be rewritten as a map

$$\theta_Y \colon M^c(Y) \otimes M^c(F) \to M^c(X).$$

The map θ_Y is clearly an isomorphism if p is the projection $Y \times F \to Y$. Let $f_i: V_i \to U_i$ be as in the Proposition. It suffices to prove each θ_{U_i} is an isomorphism. As $f_{i*}f_i^*$ is multiplication by the degree of f_i , the result follows.

References

[CD] D-C. CISINSKI, F. DÉGLISE, Triangulated categories of mixed motives, arXiv:0912.2110V3.

THE APPALACHIANS