PROJECTIVE FUNCTORS

Last updated: 20 June 2013

Apart from sins of omission, exposition, and failings in my understanding, there is nothing particularly original in this note. It stems from my attempts to understand [BG] in topological language.

o.1. Notation. For a variety X, write D(X) for the bounded derived category of constructible sheaves on X. Let $Perv(X) \subset D(X)$ be the abelian subcategory of perverse sheaves (middle perversity), and write ${}^{p}H^{*}$ for the cohomological functor corresponding to the perverse t-structure. The constant (rank 1) sheaf on X will be denoted by \underline{X} . If an algebraic group H acts on X, write $D(H \setminus X)$ and $Perv(H \setminus X)$ for the corresponding equivariant categories. In this document the group H occuring in such a situation will always be connected. Consequently, we can and will identify $Perv(H \setminus X)$ with a full subcategory of Perv(X).

o.2. **Convolution formalism.** Let *G* be an algebraic group, $H \subseteq G$ a closed subgroup, and *X* a variety with *G*-action. Assume that the geometric quotient G/H exists. Let $G \stackrel{H}{\times} X \rightarrow G/H$ denote the *X*-fibre bundle associated to the *H*-torsor $G \rightarrow G/H$. Let $m: G \stackrel{H}{\times} X \rightarrow X$ be the morphism induced by the *G*-action. For $M \in D(H \setminus G/H)$ and $N \in D(H \setminus X)$, let $M \cong N$ denote the object in $D(H \setminus (G \stackrel{H}{\times} X))$ whose pullback to $G \times X$ coincides with the pullback of $M \boxtimes N$. The *convolution* bifunctor $- \cdot - : D(H \setminus G/H) \times D(H \setminus X) \rightarrow D(H \setminus X)$ is defined by

$$M \cdot N = m_! (M \,\widetilde{\boxtimes} \, N).$$

Taking X = G/H yields a monoidal structure on $D(H \setminus G/H)$. If *m* is proper, then convolution commutes with Verdier duality.

o.3. **Flag variety.** From now on G^{\vee} will be a connected reductive linear algebraic group, $B^{\vee} \subseteq G^{\vee}$ a Borel subgroup, and $U^{\vee} \subseteq B^{\vee}$ the unipotent radical of B^{\vee} . Let $T^{\vee} = B^{\vee}/U^{\vee}$ be the (abstract) maximal torus. Write *W* for the Weyl group, and $\ell: W \to \mathbb{Z}_{\geq 0}$ for the length function.

The Bruhat decomposition yields

$$\mathscr{F}\ell = \bigsqcup_{w \in W} \mathscr{F}\ell_w$$
, where $\mathscr{F}\ell_w = B^{\vee}wB^{\vee}/B^{\vee}$, and $\mathscr{F}\ell_w \simeq \mathbf{C}^{\ell(w)}$

For each $w \in W$, put

$$\mathbf{T}_w = i_{w!} \underbrace{\mathscr{F}\ell_w}_{1},$$

where $i_w \colon \mathscr{F}\ell_w \hookrightarrow \mathscr{F}\ell$ is the inclusion. Convolution formalism yields a monoidal structure on $D(B^{\vee} \setminus \mathscr{F}\ell)$. The unit object is $\mathbf{1} = \mathbf{T}_e$. Using the Bruhat decomposition one infers that the \mathbf{T}_w satisfy the braid relations:

if
$$\ell(vw) = \ell(v) + \ell(w)$$
, then $\mathbf{T}_v \cdot \mathbf{T}_w = \mathbf{T}_{vw}$.

Further, as each i_w is affine, the functor $\mathbf{T}_w \cdot -[\ell(w)]$ (resp. $\mathbf{DT}_w \cdot -[-\ell(w)]$) is left (resp. right) t-exact. It is straightforward to see that $\operatorname{supp}(\mathbf{T}_w \cdot \mathbf{DT}_{w^{-1}}) = \mathscr{F}\ell_e$. Consequently, each \mathbf{T}_w is invertible, with inverse $\mathbf{T}_w^{-1} = \mathbf{DT}_{w^{-1}}$.

o.4. Enhanced flag variety. Let $\widetilde{\mathscr{F}}\ell = G^{\vee}/U^{\vee}$ and $\mathscr{F}\ell = G^{\vee}/B^{\vee}$ be the enhanced flag variety and flag variety, respectively. The natural (right) T^{\vee} -action on $\widetilde{\mathscr{F}}\ell$ makes the projection $\pi : \widetilde{\mathscr{F}}\ell \to \mathscr{F}\ell$ a G^{\vee} -equivariant T^{\vee} -torsor.

For each $w \in W$, put

$$\widetilde{\mathscr{F}}\ell_w = \pi^{-1}(\mathscr{F}\ell_w).$$

The T^{\vee} -torsor $\pi \colon \widetilde{\mathscr{F}}\ell_w \to \mathscr{F}\ell_w$ is trivial. For each $w \in W$, put

$$\widetilde{M}_w = \widetilde{i}_{w!} \mathscr{E}[\ell(w)]$$

where $\tilde{i}_w : \widetilde{\mathscr{F}}\ell_w \hookrightarrow \widetilde{\mathscr{F}}\ell$ is the inclusion, and \mathscr{E} denotes the free pro-unipotent local system on $\mathscr{F}\ell_w$. That is, \mathscr{E} is the local system corresponding to representation of the group algebra of $\pi_1(T^{\vee}) = \pi_1(\widetilde{\mathscr{F}}\ell_w)$ obtained by completion along the augmentation ideal. The \widetilde{M}_w are pro-objects in $D(U^{\vee} \setminus \widetilde{\mathscr{F}}\ell)$. The convolution formalism extends to these pro-objects, and we have

if
$$\ell(vw) = \ell(v) + \ell(w)$$
, then $\tilde{M}_v \cdot \tilde{M}_w = \tilde{M}_{vw}$.

Moreover, the \widetilde{M}_w are invertible, with inverse $\widetilde{M}_w^{-1} = \tilde{i}_{w^{-1}*} \mathcal{E}[\ell(w^{-1}]).$

o.5. **Category** \mathcal{O} . Let $\mathcal{O}_0 \subseteq \text{Perv}(\mathscr{F}\ell)$ be the full subcategory consisting of U^{\vee} equivariant sheaves. As U^{\vee} is contractible, this is the same as the subcategory of U^{\vee} -monodromic sheaves. Further, as U^{\vee} -orbits and B^{\vee} -orbits on $\mathscr{F}\ell$ coincide, this
is also the subcategory of B^{\vee} -monodromic sheaves. I.e., perverse sheaves smooth
along the stratification $\mathscr{F}\ell = \bigsqcup_{w \in W} \mathscr{F}\ell_w$. The natural functor from $D(\mathcal{O}_0)$, the
bounded derived category of \mathcal{O}_0 , to $D(\mathscr{F}\ell)$ is full and faithful. So we can and will
identify $D(\mathcal{O}_0)$ with a full subcategory of $D(\mathscr{F}\ell)$.

Convolution formalism yields functors $\widetilde{M}_w \cdot -: D(\mathcal{O}_0) \to D(\mathcal{O}_0)$. A priori, convolving with the pro-objects \widetilde{M}_w yields pro-objects in $D(\mathcal{O}_0)$. However, one may check that these are actually honest objects of $D(\mathcal{O}_0)$. Furthermore, if $L \in \text{Perv}(B \setminus \mathscr{F}\ell) \subset D(\mathcal{O}_0)$, then

$$\widetilde{M}_w \cdot L = \mathbf{T}_w \cdot L[\ell(w)].$$

It follows that the $\widetilde{M}_w \cdot -$ (resp. \widetilde{M}_w^{-1}) are left (resp. right) t-exact.

o.6. Free monodromic tilting sheaves. Let $\mathscr{F}\ell_{\leq w}$ (resp. $\widetilde{\mathscr{F}}\ell_{\leq w}$) denote the closure of $\mathscr{F}\ell_w$ (resp. $\widetilde{\mathscr{F}}\ell_w$) in $\mathscr{F}\ell$ (resp. $\widetilde{\mathscr{F}}\ell)$. For each simple reflection $s \in W$ one may find a *U*-equivariant regular function f on $\widetilde{\mathscr{F}}\ell_{\leq s}$ such that $f^{-1}(0) = \widetilde{\mathscr{F}}\ell_{< s} = \widetilde{\mathscr{F}}\ell_e$. Set

$$\widetilde{\mathcal{T}}_s = \Xi_f(\mathcal{E}[1]),$$

where $\Xi_f \colon \operatorname{Perv}(\widetilde{\mathscr{F}}\ell_s) \to \operatorname{Perv}(\widetilde{\mathscr{F}}\ell_{\leq s}) \hookrightarrow \operatorname{Perv}(\widetilde{\mathscr{F}}\ell)$ is Beilinson's maximal extension functor. Then \widetilde{T}_s is Verdier self-dual, and we have a short exact sequence of pro-objects:

$$0 o \widetilde{M}_s o \widetilde{T}_s o \psi_f(\mathcal{E}[1]) o 0$$
,

where ψ_f denotes the (unipotent part of) nearby cycles. We infer that $\tilde{\mathcal{T}}_s$ is an indecomposable tilting sheaf (with free pro-unipotent monodromy).

Let \mathcal{P} be the smallest subcategory of (pro-)perverse sheaves on $\widetilde{\mathscr{F}}\ell$ containing $\widetilde{\mathcal{T}}_s$, for each simple reflection *s*, and closed under taking direct summands. This is the eponymous category of projective functors.

References

[BG] A. BEILINSON, V. GINZBURG, Wall-crossing functors and D-modules, Rep. Theory 3 (1999), 1-31 (electronic).