
Some commentary around ‘integration along the fiber’ follows. I origi-
nally wanted to see, transparently, the compatibility of classical integration
along the fibre, Thom isomorphism and some ‘wrong way’ maps from
topology with the usual additional structures in complex geometry (mixed
Hodge structures, etc.). This is easily done, but the situation is a bit more
interesting than just that. I don’t have any particular applications in mind,
just leisurely strolling (stumbling) through a forest.

Regardless, here is the précis: the trace morphism, à la SGA 4 Exposé XVIII,
is integration along the fiber.

1. Classical constructions. We have the following classical construction in
topology in the absolute (over a point) setting with constant coefficients.
Let π : E→ B be a (Serre) fibration of reasonable spaces (homotopy type of
CW-complexes say, not necessarily finite dimensional). Assume the fiber
F is finite dimensional of dimension d. In particular, Hn(F) = 0 for n > d.
Define:

π] : H∗(E)→ H∗−d(B; Hd(F))

in terms of the Leray-Serre spectral sequence by the composition:

Hi(E) � Ei−d,d
∞ ↪→ Ei−d,d

2 = Hi−d(B; Hd(F)),

where the middle map is the edge map.
By the standard functoriality of the spectral sequence, π] is functorial

for morphisms of fibrations (in particular, for base change), and is a map
of H∗(B)-modules (projection formula):

π](π
∗(α) ·ω) = α · π](ω).

It is also functorial for compositions (however, in this setup this is not quite
as transparent as I would like).

If M is a compact smooth manifold and cohomology is with R-coefficients,
then π] for π : M→ ∗ coincides with integration at the level of differential
forms (modulo orientation). A formal consequence of this and functoriality
is that π] coincides with integration along the fiber for smooth bundles of
manifolds with compact fiber. If the base is compact this is immediate from
Mayer-Vietoris, functoriality for base change and the maps agreeing fiber
by fiber.

A variant of this allows us to incorporate a bit more of the structure of
the fiber. Suppose π : E→ B is a fiber bundle of manifolds with compact
fiber (of dimension d). For simplicity, assume everything is compatibly
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oriented. Let e(TE/B) be the Euler class of the relative tangent bundle. In
particular, e(TE/B) restricts to the Euler class of a fiber. Define a modified
‘transfer’:

πτ : H∗(E)→ H∗(B) by α 7→ π](α · e(TE/B)).

Then

πτπ∗ = χ(F) · id,

where χ(F) is the Euler characteristic of the fiber F.
In the situation of manifolds, an equivalent way to accomplish all of

this would be to pass from cohomology to Borel-Moore homology, push
forward along a proper map, dualize back. However, this transfer exists
in much greater generality. It is a special case of what the topologists call
Becker-Gottlieb transfer. It exists whenever the base and fiber are homotopy
finite. However, the ‘textbook’ construction goes through spectra and some
homotopy theory. This is quite satisfactory for homotopy theory, but not so
for those of us eyeing the relative case and sheaf coefficients.

2. Sheaves. In the relative setup, i.e., for sheaves, integration along the
fiber should be a morphism of functors of the form

π∗π
∗ → id[−2d](−d),

for nice maps like fibrations say. I have not thought much about this.
Instead, I will discuss the ‘compact vertical cohomology’ variant of this
which is closer to classical ‘integration along the fiber’. Namely, look for a
morphism of functors of the form

π!π
∗ → id[−2d](−d).

As usual, all functors are derived, 2d is fiber dimension, (−d) is Tate twist
(depending on the context). Perhaps it is better to formulate everything in
terms of the ‘orientation sheaf’, but so that I don’t get too confused let me
stick to using Tate twists for now.

There is more or less nothing that needs to be done if we restrict ourselves
to (oriented) topological submersions: the usual adjunction gives us the
desired maps. However, as the absolute situation indicates, we should be
able to do better (we should certainly be able to make it work for fiber
bundles). Regardless, any general construction should coincide with the
the special case of topological submersions and satisfy all the functoriality
one could possibly ask for (compatibility with base change, etc.). The
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functoriality should characterize said map uniquely (when restricted to
interesting categories of spaces).

With this perspective it is quite easy to address my initial motivation
(compatibility with mixed structures in complex algebraic geometry), let
me digress briefly and get this out of the way.

3. Compact vertical cohomology, Thom isomorphism and mixed struc-
tures. I will play with varieties (separated schemes of finite type over
Spec(C)). The ‘constant sheaf’ will be denoted by X. Forgive me the sin of
not strictly defining what category of ‘sheaves’ I am working with: at this
point I will only use a very limited version of the usual yoga - localization
triangle, !-pushforward, !-pullback only for closed immersions. So ordi-
nary sheaves (Noetherian ring coefficients), mixed Hodge modules, motivic
sheaves, . . . all work. The term ‘sheaf’ should be interpreted as an arbitrary
object in the derived/triangulated category one chooses to work with.

Let π : E→ B be a vector bundle, of (complex) rank d with zero section
i : B ↪→ E. Apply π! and π∗ to the canonical maps i∗i! → id and id→ i∗i∗.
Then we have our old friend, the algebraic homotopy lemma:

i!E ∼−→ π!E and π∗E
∼−→ i∗E

are isomorphisms. The composition:

(3.1) π!π
∗B ∼−→ π!π

!B[−2d](−d)
adjunction−−−−−→ B[−2d](−d)

is clearly an isomorphism. Combined with the homotopy lemma we get:

Proposition 3.2 (Thom isomorphism). Let π : E→ B be a vector bundle of rank
d. Write i : B ↪→ E for the zero section. Then we have a canonical isomorphism:

i!E ∼−→ π!E
(3.1)−−→ B[−2d](−d).

Push everything to a point to get the ‘classical Thom isomorphism’:

H∗B(E) ∼−→ H∗cv(E) ∼−→ H∗−2d(B)(−d).

(I hope the notation is self-evident). The compatibility with any mixed
structures around is now transparent.

4. Trace maps. Back to seeking a map of the form

π] : π!π
∗ → id[−2d](−d).

There is a relatively easy answer for varieties. We can do this for any
morphism of varieties!
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What makes everything tick is already manifest in the standard construc-
tion of fundamental classes for arbitrary varieties. Namely, for an irreducible
variety X of (complex) dimension d, let U ⊂ X be the smooth locus. Then
U is dense in X and X−U has strictly lower dimension than X. So we have
an isomorphism:

H2d
c (U)

∼−→ H2d
c (X).

Thus, a fundamental class of U yields a fundamental class for X. The
point: generic smoothness (of X), the fact that C has real dimension 2, and
cohomological dimension (for compact supports) is bounded by the (real)
dimension, allows us to reduce everything in the top dimension to smooth
varieties.

The relative version of this is not much more complicated. At this point
I will restrict myself to working with ordinary sheaves or mixed Hodge
modules. The arguments are greatly simplified by the presence of the
standard (non-perverse) t-structure. Without a t-structure (motivic sheaves)
the arguments require a lot more consideration of distinguished triangles
and long exact sequences of Hom-groups (Chow groups in the motivic
setting). It would just obsfuscate the core simplicity of the situation.

It will be convenient to make the following definition: for a morphism of
varieties π : E→ B, set

dπ = maximum of the dimensions of (geometric) fibers of π.

We want to construct a canonical map

π] : π!π
∗ → id[−2dπ](−dπ).

By the projection formula I only need to do this for the constant sheaf.
Further, we may assume that all our varieties are reduced.

Now the point is that the cohomology sheaves of π!E vanish above degree
2dπ. So the sought after map determines, and is uniquely determined by, a
map:

H2dπ (π!E)→ B(−dπ).

If π : E→ B is a morphism of irreducible varieties, then there is an open
dense subvariety U ⊂ E such that the restriction of π to U, denoted πU , is
smooth. As in the absolute case, for dimension reasons, the canonical map
πU!U → π!E yields an isomorphism:

H2dπ (πU!U)
∼−→ H2dπ (π!E).
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Hence,

πU!π
∗ ∼−→ πU!π

!
U [−2dπ](−dπ)

adjunction−−−−−→ id[−2dπ](−dπ)

yields the desired map π].
To deal with multiple components, glue the π] obtained above for each

component (they agree on intersections).

Theorem 4.1. To each morphism of varieties π : E→ B, we may associate, in a
unique way, a canonical map, the trace map:

π] : π!π
∗ → id[−2dπ](−dπ),

such that the following conditions are satisfied:

(i) If

Ẽ
f̃
//

π̃
��

E

π
��

B̃
f
// B

is a cartesian square, then the diagram

π̃!π̃
∗ f ∗ ∼

//

π̃] &&

π̃! f̃ ∗π∗ f ∗π!π
∗∼

oo

f ∗(π])xx

f ∗[−2d](−d)

where the horizontal arrow on the right is the base change isomorphism,
and d = dπ = dπ̃, is commutative.

(ii) Given a sequence of morphisms E1
g−→ E2

f−→ B, the diagram

f!g!g∗ f ∗
f!(g])

//

∼
��

f! f ∗[−2dg](−dg)

f]
��

( f g)!( f g)∗
( f g)]

// id[−2(dg + d f )](−(dg + d f ))

is commutative.
(iii) If π is smooth of relative dimension d, then π] is the composition:

π!π
∗ ∼−→ π!π

![−2d](−d)
adjunction−−−−−→ id[−2d](−d).
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The existence of π] was sketched above. The uniqueness is clear from the
functoriality requirements. Checking these requirements doesn’t require
any new ideas but involves the usual tedium of ensuring the ‘coherence’ of
base change isomorphisms and adjunctions with compositions, etc.

In the étale cohomology context this result is contained in SGA 4 Exposé
XVIII §2. There the goal is to construct the duality isomorphism

f ∗ ∼−→ f ![−2d](−d)

for smooth morphisms. The argument in SGA 4 proceeds via a long in-
duction through the method of fibering by curves. It offers an alternate
proof of existence. In our complex algebraic/topological situation, the ar-
gument above is a large simplification since we already have the duality
adjunction/isomorphism for smooth morphisms quite cheaply.

There are now a number of games one can play with characteristic
classes (or more generally with interesting classes on the total space whose
restrictions to the fibers can be understood) to get relative versions of the
transfer as in the absolute setting. I haven’t thought about this enough
to see if one gets anything interesting - it is probably only interesting
in the torsion coefficients setting since over Q everything is probably
subsumed by Hard Lefschetz. There is also the question of compatibility
with specialization/cospecialization (á la nearby cycles) that I need to think
about a bit.
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