THE BASIC OBSERVATION: ALTERNATE PROOF

R. VIRK

1. The Basic Observation. The following Lemma is well known.

Lemma 1.1. Let G be a linear algebraic group. Then $H^*(G)$ is Tate.

Proof. We may assume *G* is connected reductive (Levi decomposition).

Basic Observation. Let G be a linear algebraic group acting on a variety X. If $H^*(X)$ is Tate, then the G-equivariant cohomology $H^*_G(X)$ is Tate.

Proof. Argue by contradiction. We may assume *G* is a torus. Let *n* be minimal with the property that $H^n_G(X)$ contains a non-Tate class. Let *EG* be an *N*-acyclic approximation, $N \gg 0$, to the universal bundle on the classifying space *BG* (yep, I am abusing notation here). Consider the Leray spectral sequence associated to the *G*-torsor

$$\pi\colon EG\times X\to EG\times^G X.$$

As *G* is a torus, this torsor is *Zariski* locally trivial. In particular, the *VMHS* $R^q \pi_* \mathbf{Q}$ has Tate fibre. Now the $E_2^{n,0}$ -term is

$$E_2^{n,0} = H^n(EG \times^G X) = H^n_G(X).$$

By the minimality of *n*, any non-Tate class in $E_2^{n,0}$ must survive to the abutment (for $i \ge 2$, the entry $E_i^{n,0}$ is always in the kernel of the differential, but there are no non-Tate classes above and strictly to the left of this entry). But the latter is $H^n(EG \times X) = H^n(X)$.

Now that I think about it, it is probably simpler to look at the fibration

 $X \hookrightarrow EG \times^G X \twoheadrightarrow BG.$

Or in the G/K case, just look at the fibration

$$K \hookrightarrow G \twoheadrightarrow G/K.$$

Take *K* to be a torus to make it Zariski locally trivial (so no funny business with strange Hodge structures on the fibres).

THE APPALACHIANS