
COMPUTING EXTENSIONS

R. VIRK

0.1. Notational comments. I will be deliberately vague about what a ‘space’ is
and what a ‘sheaf’ on a space is. Everything that follows is formulated functori-
ally (dare we say motivically) enough that it goes through in the following rough
generality: some category fibred over the category of ‘reasonable spaces’ with fi-
bre a triangulated category (satisfying suitable descent conditions), objects of the
latter being called ‘sheaves’. I also require a limited functor formalism for the
triangulated category of sheaves: monoidal structure, pullback and pushforward
along inclusions, extension by zero, restriction with supports, along with the stan-
dard adjunctions and distinguished triangles between these. The constant sheaf
on a space X, denoted X, will always mean the pullback of the unit object over a
point. For the sake of intuition, the reader should take ‘space’ = ‘complex variety’,
and ‘sheaf’ = ‘constructible complex of sheaves in the classical topology’.

0.2. Dévissage step. Let X be a space, j : U ↪→ X the inclusion of an open sub-
space, and i : Y ↪→ X the inclusion of the closed complement Y = X−U. Let L, N
be sheaves on X. Then we have the familiar long exact sequences:

(0.2.1) · · · → H•(j! j∗L) → H•(L) → H•(i∗i∗L) → · · ·

(0.2.2) · · · → H•(i∗i!L) → H•(L) → H•(j∗ j∗L) → · · ·

(0.2.3) · · · → Ext•(i∗L, i!N) → Ext•(L, N) → Ext•(j∗L, j∗N) → · · ·

Consider the following conditions:

(∗) the sequence (0.2.1) splits into short exact sequences:

0 → H•(j! j∗L) → H•(L) → H•(i∗i∗L) → 0

(!) the sequence (0.2.2) splits into short exact sequences:

0 → H•(i∗i!L) → H•(L) → H•(j∗ j∗L) → 0

(∗−!) the sequence (0.2.3) splits into short exact sequences:

0 → Ext•(i∗L, i!N) → Ext•(L, N) → Ext•(j∗L, j∗N) → 0

(F) the map Ext•(i∗L, i!N) → Hom(H•(i∗L), H•(i!N)) is injec-
tive, and the map Ext•(j∗L, j∗N) → Hom(H•(j∗L), H•(j∗N)) is
an isomorphism.

Throughout, hypercohomology H•(L) = Ext•(X, L) is considered as a functor to
graded H∗(X) = Ext•(X, X)-modules.
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Lemma 0.3. Let L ∈ Db(X) and M ∈ Db(U). Suppose L satisfies (!), and

Ext•(j∗L, M) → Hom(H•(j∗L), H•(M))

is an injection. Then the map

Ext•(L, j∗M) → Hom(H•(L), H•(j∗M))

is injective.

Proof. Applying Hom(−, H•(j∗M)) to (!) we obtain an injection

Hom(H•(j∗L), H•(M)) ↪→ Hom(H•(L), H•(j∗M)).

I leave it to the reader to verify that the composition

Ext•(L, j∗M) ∼−→ Ext•(j∗L, M) ↪→ Hom(H•(j∗L), H•(M)) ↪→ Hom(H•(L), H•(j∗M))

is the map in question (use the standard properties of adjunction maps). �

Proposition 0.4. Suppose (∗−!) and (F) hold. Further, assume L satisfies (∗), and both
L, N satisfy (!). Then the map

Ext•(L, N) → Hom(H•(L), H•(N))

is injective.

Proof. We have a commutative diagram:

0

��

Ext•(i∗L, i!N) //

��

Hom(H•(i∗L), H•(i!N))

��

Ext•(L, N)

��

// Hom(H•(L), H•(N))

��

Ext•(L, j∗ j∗N) //

��

Hom(H•(L), H•(j∗ j∗N))

0

The left vertical column is exact by (∗−!). The top horizontal map is injective by
(F). Now take M = j∗N. By (!) for L and (F), we are in the situation of the previous
Lemma. So the bottom horizontal map is also injective. To complete the proof it
suffices to show that the top vertical map in the second column is injective. Let
φ : H•(i∗L) → H•(i!N) be non-zero. Then the map in question sends φ to the
composition

H•(L) � H•(i∗i∗L)
φ−→ H•(i∗i!N) ↪→ H•(N).

The first map in this composition is surjective by (∗) for L, and the last map is
injective by (!) for N. �

Remark 0.5. The basic idea of the above argument is essentially stolen from [BGS,
Proposition 3.4.2]. However, the spectral sequence used in loc. cit. makes it hard
to keep track of the various maps involved.
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Remark 0.6. It is clear that for the purposes of the Proposition we could weaken
the isomorphism in (F) to an injection, but I do not know of any situation where
such generality is helpful.

With a bit more geometric input we can strengthen the injection above to an
isomorphism. Replace (F) by

(FF) Both of the evident maps Ext•(i∗M, i!N) → Hom(H•(i∗M), H•(i!N))
and Ext•(j∗L, j∗N) → Hom(H•(j∗L), H•(j∗N)) are isomorphisms.

We also need transverse slices:

(S) there exists a closed embedding s : S ↪→ X which is obtained
locally on X by embedding X into a smooth space Z and then S is
the intersecton S′ ∩X, where S′ ⊆ Z is a closed subspace. Further,
S has empty intersection with Y and intersects U transversally in
a contractible subspace.

Proposition 0.7. Suppose L, N are smooth along the stratification X ⊃ Y ⊃ ∅. Further,
assume

(i) L satisfies (∗) and (!);
(ii) (∗−!), (FF) and (S) hold;

(iii) N satisfies (!).

Then the map

Ext•(L, N) → Hom(H•(L), H•(N))

is an isomorphism.

Proof. The transverse slice of (S) determines a cohomology class [S] ∈ H∗(X). For
any sheaf M that is smooth along the stratification X ⊃ Y ⊃ ∅, the action of [S]
on H•(M) (modulo grading shifts) is given by:

H•(M) → H•(s∗s∗M) ∼−→ H•(s∗s! M) → H•(M),

where the middle isomorphism is a canonical isomorphism obtained from the
transversality assumption (or can be taken as the abstract/formal definition of
transversality). If a sheaf M satisfies (!), then the action of [S] on H•(M) kills
H•(i∗i! M), since S ∩ Y = ∅. In fact, as S ∩ U is non-empty and contractible,
we infer H•(i∗i! M) is precisely the kernel of the action of [S]. Similar reasoning
shows that if M satisfies (∗), then the image of the action of [S] is H•(j! j∗M).

In our situation this implies that a morphism φ : H•(L) → H•(N) must map
H•(i∗i!L) to H•(i∗i!N). Thus, φ induces a morphism

π(φ) : H•(j∗ j∗L) ' H•(L)/H•(i∗i!L) → H•(N)/H•(i∗i!N) ' H•(j∗ j∗N).
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Consequently, we obtain a commutative diagram:

0

��

0

��

Ext•(i∗L, i!N) ∼
//

��

Hom(H•(i∗L), H•(i!N))

��

Ext•(L, N)

��

// Hom(H•(L), H•(N))
π

��

Ext•(j∗L, j∗N) ∼
//

��

Hom(H•(j∗L), H•(j∗N))

0

The top and bottom horizontal maps are isomorphisms by (FF). The left column
is exact by (∗−!). The top half of the right column is exact by (∗) for L and (!) for
N (as in the proof of the previous Proposition). To complete the proof it suffices
to show that the right column is exact in the middle. Let φ : H•(L) → H•(N) be
such that π(φ) = 0. Then, using that L satisfies (∗), φ must map H•(j! j∗L) to 0,
and must map H•(L)/H•(j! j∗L) ' H•(i∗i∗L) to H•(i∗i!N) ⊆ H•(N). Thus, φ

induces a morphism H•(i∗L) → H•(i!N). This latter morphism is mapped to φ
in the right column of our commutative diagram. �

Remark 0.8. The idea to use transverse slices comes from [Gi].
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